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matrix multiplication. With feedback, this system can solve the
adaptive radar equation using a new iterative algorithm. This system
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EVALUATION

Adaptive processing for radar systems becomes complex as the number

of adaptive weights increase. Algorithms used to generate these weights

are conventionally implemented through general purpose computers or dedi-

cated hardware of which numerical operations are limited to discrete

parameters and the instruction rate. Convergence time also becomes a

problem as the number of weights becomes large.

In an effort to assess the parallel channel potential of optical

processing, this effort was initiated. The number of parallel channels

approaches a continuum mode where optical focusing replaces arithmetic

operations. Results of the work demonstrate the feasibility of weight

determination through direct methods and closed loop techniques.

Such approaches have the potential of leading to efficient and

cost effective methods for realizing large scale adaptive radar systems.

VINCENT C. VANNICOLA
Project Engineer
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CHAPTER 1

1. INTRODUCTION

Adaptive phased array radars represent one of the most demanding signal

processing problems that merits consideration of the use of advanced signal

processing techniques such as optical processing. In this report, we summarize

the results of a one year research program in which three different optical

techniques were considered for adaptive phased array radar processing.

The use of optical residue arithmetic systems is described in Chapter 2.

A matrix multiplier using residue arithmetic is described as are decimal/residue

and residue/decimal converters. The speed and parallel processing possible withI processors that operate in the residue number system are the main advantageous

features of such systems. An optical or similar analog processor using

residue arithmetic is likewise attractive because of the increased accuracy

that this type of arithmetic provides. In Chapter 2, we presernt a new correla-

tion approach that we developed for the formulation of problems and operations

in residue arithmetic. We also present the description of three new optical

residue arithmetic systems that perform decimal/residue and residue/decimal

conversion and a residue arithmetic adder. We conclude with the design of a

residue arithmetic matrix multiplier and our recommendations for future research

in this area.

A modified coherent optical correlator (COC) system for adaptive phased

array radar processing is described in Chapter 3. In this system, the inputs

to a multi-channel correlator are the heterodyne received array signals. The

correlation of the received signals with a reference array signal is formed in

parallel. When the output of this system is integrated along angular slits

using a specially shaped solid-state detector, the output is a map of the

angular distribution of the noise field. As we show, a simple digital postprocessor

that performs the inverse DFT can produce the desired adaptive weights from this
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output in several restricted cases. A statistical analysis of this processor

is also provided.

An iterative optical processor (10P) system using a linear input LED

array, 2-D mask and 1-D output detector with feedback is then described in

Chapter 4. This system performs a vector-matrix multiplication and with feed-

back results in an iterative processor that has the covariance matrix as an

input and that solves the vector-matrix adaptive phased array radar equation

for the desired weights using a new iterative algorithm.

For all three candidate optical processors, laboratory optical systems

were assembled, tests and demonstrations of each were conducted, and analysisI was conducted of the system's key features, a study of the availability of

components was made and recommendations for future work are advanced.

1.2 ADAPTIVE PHASED ARRAY RADAR PROCESSING REVIEW

A simplified block diagram of an adaptive phased array processor is shown

in Fig. 1.1. The basic concept is to multiply each of the received signals v

by an appropriate weight w n and to then sun these products to produce the output

N
E I wn vn. (1.1)

In

If the same weight is applied to all elements, the beam formed is normal to the
array and described by

ir Nd sin 0

E -K din0(1.2)

where dI is tile element element spacing, 0 Is tile steering vector Of the array,

and 1; Is the number of ele-.iintn. By varying the phases of the weights w no thle
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beam can be steered to different direct tons. This is achieved by selecting the

phases such that a signal incident from the desired scan angle adds in phase

across the array.

By adjusting the amplitudes and phases of the w n, the side lobe levels can

be decreased and the effects of other noise sources in the antenna's field of

view can be reduced. In such APAR systems, nulls are placed at angles and

frequencies in the antenna pattern corresponding to different noise sources.

This adaptive control is achieved by separate adaptive loops on each of the

antenna elements as shown in Fig. 1.2. The steering signals s* indicate the
n

direction in which the array is steered and hence the location of the antenna's

main beam. The un values are the correlation of the received array

-signals v nand the output g W n v n. When w nog is large, u nand hence wn

change rapidly. The purpose of an adaptive array is to reduce the noise in g.

When u in a given channel is large, the corresponding weight w has a larger

effect on reducing the residue noise in g.

For receiver noise only, the same for all channels, the weights w alln

approach the same value. If one wn is larger, the corresponding w v termn n n

in g is larger and this will cause larger r and u values for that channel,n n

which will decrease w . Thus, an adaptive array achieves uniform illumination
n

only for receiver noise alone. When the received signal energy is less than

th interference and noise energy, the adaptive loops attempt to minimize the

Input power (subject to the steering vector constraint). If the noise in g

Is approximately zero, the z values will be small and the w will be rela-

tLively constant.

The weights can be described by

W C (s* -u ) (1.3)n " n n

"1J
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The low pass filter with time constant r can be described by

n + Un -Zn, (1.4)

and

z= v* g =v* w v. (1.5)Zn n n Iwn n

These equations describe, the response"of each of the N adaptive loops. The

variation of wn depends on the inputs from all N channels and on the weights

of the other N - 1 channels. In matrix form, we describe the loops by

W = G (S* - U)

U U+ U =Z

z V (v- W), (1.6)

where VT is a row vector and W etc. are column vectors. In terms of average

T*

values

Z V VT W MW, (1.7)

where M is the covariant matrix

j  Avg (V*V). (1.8)

i
' -



1.6

31$ is a constant steering vector, U - WIG and the loop is described by.

T W/c + (M + IG) W - S*, (1.9)

where I is the identity matrix. Equation (.9) describes a set of N different

equations that describe the average response of the array weights W. The values

W depend upon the external noise (thru M) and the control loop parameters (S*,

C and Y). The conventional approach is to solve (1.9) for W and then apply these

V to the received array signals.a

The covariance matrix H is fundamental to all APAR processing theory since

It describes the noise environment. The diagonal terms in H are a measure of

the power in each channel, whereas the off diagonal elements of M describe the

dir ction of arrival of the noise. The rate of convergence of (1.9) depends

upon the noise environment. The steady state solution to (1.9) is found

vlth W - 0 (assuming G - 1) to be

WM ,- S*. (1.10)

The desired weights W can then be found from S and M as

W - S . (1.11)

Equation (1.11) can be obtained by inverting the matrix M, and forming the

indicated vector/matrix product. Computation of M requires 2 N samples at

the signal frequency to yield acceptable statistics.

Various correlation loop processors exist. The maximnn SNR circuit is the

most popular. It uses the Widrow least mean square circuit. It requires an

*Al
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initial estimate for W, computation of the gradient at different surface points,

etc. until the minimum concave surface is obtained. The system in Fig. 1.2

uses a typical Howells-Appelbaum loop in which the residue is fed back and

correlated with each of the received signals. The filtered outputs are pro-

portional to the gradient. When subtracted from the steering signal, they yield

the adaptive weights. A modified random search technique with many variations

also exists.

ir
A&
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CHAPTER 2

A RESIDUE ARITHMETIC PROCESSOR FOR
ADAPTIVE PHASED ARRAY RADAR

2. 1 INTRODUCTION

The data processing requirements for adaptive phased-array radar (APAR)

systems represent one of the largest challenges to present technology. For

this reason, new and fresh approaches to AFAR processing are necessary

to handle the massive. data processing requirements foreseen for the future,

The novel data processing approach considered in this chapter is the use of

residue arithmetic (RA).

Addition, subtraction and multiplication can be performed in RA with no

carries required. Because of this, RA is directly implementable in a parallel

processor and is thus one of the fastest computational methods available.

Since an optical system is inherently a parallel processor, a RA optical pro-

cessor implem~ntation is most attractive. RA is also attractive because it

offers a solution to the problems of limited accuracy and limited dynamic range

present in many optical and analog data processors.

A brief review of residue arithmetic is included in sect. 2.2. The rea-

sons for considering this novel processing approach (speed, parallel processing,

accuracy, high dynamic range, etc.) can then be seen more clearly (Sect. 2.3).

The first major issue to be decided upon in a residue processor is how to

realize the cyclic permutations required to represent numbers in moduli. In

Sect. 2.4, we discuss the various alternatives available and the reasons why

we chose pulse-position coding to represent numbers in RA.f

The second issue --o be addressed in a RA processor is the formulation of

the RA operations performed. One of the major original achievements of this

contract was the correlation formulation of RA operations. This is included
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in Sect. 2.7. Specific RA system designs for decimal-to-residue and residue-

to-decimal converters are provided in Sects. 2.5 and 2.6. As part of this

program, we provided the first experimental demonstration of an optical RA

system (Sect. 2.9). The design of a RA adder (Sect. 2.8) shows how the pro-

cessing system's architecture directly follows from our correlation formulation

approach. Another advantage of our correlation formulation of RA is the ease

with which RA processors can be realized using many diverse technologies

(LSI, CCDs, SAW, Acousto-Optics, Waveguides, Integrated Optics, etc.).

In Sect. 2.10, we quantify the dynamic range obtainable in a RA optical

processor and suggest several added schemes to increase the system's dynamic

range. A related aspect of a RA optical processor that emerges clearly and

numerically in Sect. 2.10 is the utilization of the vast space bandwidth

product available in an optical processor.

In Sect. 2.11, we briefly review another approach to the realization of

residue operations (the use of maps). We also include system realizations of

residue processors using technologies such as ROMs and integrated optics. The

design of a multiplier in residue is then discussed in Sect. 2.12. With these

basic building blocks (converters, adders and multipliers), we sketch the

design of a parallel, pipelined matrix multiplier using residue arithmetic

in Sect. 2.13. Conclusions are then advanced in Sect. 2.14.

2.2 RESIDUE ARITHMETIC

A brief review of residue arithmetic follows. In the residue number

system, an integer is represented by the N-tuple set of residues

(Rm,Rm, ... with respect to the N different relatively prime integer

moduli mi1 , ... , mN . The residue Rmi is the least positive integer remainder

of the quotient of X and mI. The maximum integer value that can be represented

by N moduli is M-1 where
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N
M -- m .

i=1

An example will easily clarify this. To represent 13 in the residue

system with moduli (5,7,9,2), we divide 13 by the first modulus 5 and obtain

2 and a remainder of 3. Dividing 13 by the second modulus 7, we obtain 1

and a remainder of 6. Dividing 13 by m3 = 9, the remainder is 4. For m4 = 2,

the remainder is 1. These four remainders are the representation of 13 in

the residue number system with moduli (5,7,9,2), i.e. 13 = (3,6,4,1).

To see the advantages of residue arithmetic, we consider how to realize

the sum of 13 and 59 in residue with moduli (5,7,9,2). Proceeding as before,

we find 59 = (4,3,5,1). To sum two numbers in residue notation, we sum each

separate pair of residue numbers in the same modulus mi and retain only the

residue, i.e.

m. = (5,7,9,2)
I

+.59 (4,3,5,-1)
72 (2,2,0,0)

where 3+4 modulo 5 has a remainder 2, 1- I modulo 2 is 0, etc. Checking, we

find that the decimal !:um 72 is (2,2,0,0) in moduli (5,7,9,2).

To subtract two numbers in residue, e.g. 72-13, we invert 13 in residue

(by simply complementing each bit i modulo m. in the residue representation)1

~i.e.

m i = (5,7,9,2)

13 =(3,6,4,1)

-13 = (2,1,5,1)

The bits i of the residue 11mMIbCrs 72 aid -13 are then added as before

72 = (2,2,0,0)

-13 (2,1,5,1)
59 (4,3,5,1)

ij
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To multiply two numbers in residue, we convert each number to its residue

representation, multiply each bit pair, and retain the residue of each product

modulo mi. Consider forming the product of 19 and 12 in the same moduli.

m 1 = (5,7,9,2)

19 = (4,5,1,1)
12 = (2,5,3,0)

19 x 12 = (3,4,3,0) = 228

where 1 times 0 is 0 in any modulo, 3 times 1 is 3 modulo 9, 5 times 5 is

25 but modulo 7 the remainder or residue is 4, and 4 times 2 is 8 which yields

a residue of 3 in modulo 5. The product of 19 and 12 in decimal is 228. But

228/5 equals 45 and a residue of 3, etc. from which 228 = (3,4,3,0) with

respective moduli (5,7,9,2). From the above examples, the attractive features

of residue arithmetic are apparent.

2.3 SPECIAL FEATURES

As shown in Sect. 2.2, no carries are required in a residue arithmetic

computation. Thus this is inherently one of the fastest possible computing

methods available [2.1 - 2.3] and thus of potential concern to the matrix

inversion process. A second feature of residue arithmetic is that in residue

processing a given computation is divided into subcomputations of reduced

complexity. This allows these sub-operations to be performed in parallel

with reduced dynamic range requirements. The accuracy of the resultant opera-

tions is high because the system's dynamic range is proportional to the product

of the residue moduli used. Thus, residue arithmetic directly allows the use

of multi-channel parallel computations that are the forte of optical computing

and overcomes any potential dynamic range and accuracy limitations often

associated with optical processors.

00
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2.4 REALIZATIONS

Residue processing requires a cyclic permutation procedure. This can be

realized by: polarization, phase, or pulse position coding. The former two

approaches are being pursued by Collins [2.4]. It appears unrealistic in

practice since nearly ideal 2-D spatial light modulators are required. Since

such devices are space variant, we considered pulse position modulation.

Huang [2.5 - 2.6] was the first to suggest an optical residue arithmetic

processor. Recent work [2.7 - 2.8] has concentrated on similar pulse position

coding. We concur with such an approach because of the large overall error intro-

duced into a residue processor when an error occurs in any bit.

2.5 DECIMAL-TO-RESIDUE CONVERSION [2.91

We consider the conversion of a decimal number into the residue number

Rmi modulo mi and the specific correlator topology in Fig. 2.1. We define a

unit decimal distance Ax and thus represent the decimal number x by a delta

function at x-0 XAx in P0. The amplitude transmittance of P0 is thus

g(x0 ) = 6(x0-XAx). (2.1)

Lenses LI in Fig. 1 form the I-D Fourier transform (FT) of g horizontally,

while imaging vertically (i.e. a multi-channel I-D FT). We consider only

one y channel for simplicity. The FT of g incident on P is

G(u) exp (j2nuXAx). (2.2)

Spatial distance x in P is related to input spatial frequency u by

x= tfLU, (2.3)

S.
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where X is the wavelength of the laser light used and f = fsl is tile

focal length of lens LIs in Fig. 2.2 Eq. 2.2)describes a planewave incident

on P1 at an angle that depend.,; on XAx (the position of the input delta function

and hence the value of the decimal input number X).

To realize the conversion of X to R modulo m we place at a square

wave grating with transmittance

II. (u) = exp (j2iiunm. Ax), (2.4)
0I = ..

where the fundamental frequency u gi of the grating present on this channel i

is chosen such that the separation between the dc and + first order terms in

the FT of ( 2.4) is

miAx = 1 f (2.5)

For simplicity, the samle unit distance Ax is a-voumed for decimal tiit; ii iP 0

and for residue uuits in P2 (this is equivAleUt to assumig a I1:1 imaiging

system for L1 and L2).

In one version of a decimal/residue converter, the input P0 data is a

vertical slit (one decimal number) and the desired outputs at P2 are the

residue numbers Rmi for N moduli m. as shown in Fig. 2.1. In such a case,

the system will have N channels and at P1 there will be N different square

waves recorded on these N channels. The frequency ugi of the grating on

channel i will correspond to the modulus mi of that channel as in (2.5).

Again, for simplicity, we restrict attention at present to one channel i.

The light amplitude distribution leaving channel i of plane I' is the

product of (2.2) and (2.4) or

GIt. exp [j2lu(X-numi)Ax. (2.6)

11
0I = ...

... !
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Lenses L2 il Fig. 2.1 form the I-D horizontal FT of (2.6) and a P2 we find

L2en2 ) L g) x 1x2 -(X-1m 1 )Ax, (2.7)

where x 2 is the spatial coordinate of P,,. This P2 pattern consists of delta

functions with center-to-center spacings in Ax proportional to the modulus mi

and replicated at distances that are multiples of this modulus. These delta

function outputs occur at

x 2=(X-nmi)Ax • (2.8)

The pulse position coding of X in PI and the carrier modulatoi [11u1l tipli-

cation of (2.2) by (2.4) and Fourier transforming the result] operations involved

have now been explained. Before describing the last required operation

(aperture control), we digress for the moment to a general description of

decimal/residue conversion. Any decimal number X can be written as

X = rim. + Rm, (2,9)1 m.
1

where n is the number of times X is divisible by m. and where the remainderI

or residue R must satisfy
m.

I

0 < " n - . (2.10a)
i. 1

Solving (2.9) for Rm. we find
I

R = X-rim.. 2la
RM.i X1i (2.11a)Ii

lrom(2.11a),we see that R is the remainder after m. has been subtracted n

times from X. Multiplying (2 .10a) and (2.11a) by Ax, we obtain

p.
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INPUT

LASER 0

LIGHT 5
GRATINGS \10

P, Lc L, P, L,, L2, P,

Fig. 2.1 Schematic diagram of a decimal-to-residue optical converter.

II

RESIDUE 1O'
INPUS DECI M AL

LG

MNN

GRANGS CLOCK-

F,, L , L, F, L,, L,, F,

Fig. 2.2 Schematic diagram of a residue-to-decimal optical converter.
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0 R x < (mi-1)Ax (2.10b)

SAx 1- (X-n. )Ax. 2.11b)
SI

Now, returning to(2.7),we see that tile locations of the n output d~ita

functions in P of Fig. 2.1 satisfy (2.8), which agrees with (2.11b). To insure
2

that the subtraction of m. from X has been performed the proper number of
1

times n so thiat(2.1Oa) and (2.10b) are satisfied, we examine only the P2 region

satisfying

0 < x2 < (m -l)Ax. (2.12)

This is obviously equivalent to satisfying(2.1Oa) and (2.10b).Only one of the

delta function outputs in (2.8) satisfies (2.12).

If we place a rectangular aperture at P2 of Fig. 2.1 of width m iAx in x2

centered at P2 as defined by(2.12),there will be ri possible locations of the out-

put spot of light withi '1iis aperture. The locaLion of the output peak of light

within this aperture denotes the residue R modulo in. of the decimal inputm. 3.

X in terms of a unit residue distance Ax (i.e. pulse-position coded). By

aperture control we simply mean placing an aperture at P2 to select the

remainder or residue in the proper range.

The above analysis considered only one channel of the system of Fig. 2.1.

If this system is to be used to convert the decimal number X into the N

residues P for the N moduli ii, the ilputL P0 paltern is a slit as shown in
I-

Fig. 2.1. Its x0 location Xx denotes the decimal input number X. At PI, we

now place N gratings of spatial frequencies u . (corresponding to the N

moduli mi to be used to represent X) on N separate lines or channels at P

Withint the aperture placed at P2 there will be N channels with an output spot

of lighit at a different horizontal location on each channel. The horizontal

location of the output on each chintl i. denotes the residue number R for X

LSO

fr~
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in the modulus mi for the particular channel. This particular arrangementJof a decimal-to-residue converter may not be optimum from a system standpoint.

We could also insert various decimal numbers on separate channels at P0 in

Fig. 2.1. By use of a single grating at P2 ' the conversion of N decimal

inputs into their equivalent residue representations with respect to one

modulus results at P2"

2.6 RESIDUE/DECIMAL CONVERSION

The schematic of a residue-to-decimal optical converter is shown in Fig. 2.2.

The system is topologically the same as that of Fig. 2.1, however the inputs at P0

are now N residue numbers in the N moduli m. chosen. These N input residue

numbers R are represented by a ptlste o[ light whose horizontal distance RAx

along channel n represents the residue number by pulse-posiLion coding as

before.

AL PI of lig. 2.2,N gratiiig ; ire pi,.ed on tlho N difleCit Clw; tcl ; t iti

the sl)aLiat [rc(tjitUCy of c+Itc' g1ixi i nj choto;n't to c entOtli Lo Lit Ill(i (V

m. for that ch tAIIl. Tlie OuLpIML u lot" V g ll 1 c.11111e I t IP 2t It l tii.2.2

will Le a sLL of del ta ftlaLt ioill-; aM btor l . .1 hII o(, l'i J:2 L.I1 p' ititmn; 0t

Litse de lt fttIlctio ,tS tow COIrre:pon(ri; Lo A l t :;:,;i L dIcimltal 11111111('1-! to

witici Lhe inll L r1'idttc nitMbe- could cottc,;jmt (for lI part i at- tiodtI ic

of that ch1an1e10 ). The horizontal po..it.ion XAx in P., aIt wiici Lite de, Lra fmic-

Lions Ott all N clitmi ,ll ;n,. -Ili i.ited .Inotl,,: InII,, i'Voilt t,,,.il.!l ll l t X (.,I-[

responding to tl, N jIlptlL teo idt(i ntier-; ] ill Li(' N 1 (011i M.. To (]dct:CL

the ouLit-lL,l 4,-L of. lI ii .iRlL;t r I -Ottjt, , liltc,11" 1110L0 Iiode or (O 'l) ;lf-

scatiricd (IC.Lec Lor array.; can be placed at P2" IiC Otit p lL Irom an N input

NOR or ANI) t' (dt ctldi l,, oi hI, li t .rily o('i ill ,; de;;irC d) inl tX 'hit zatLion

9'I

' _ 1,'
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with a Ax CouliLer will detioLe Lhe decitiali oULpuit valtic X (or cqttivileulL ly

te horizoiiLalI XAx OSitLoR i 1'.1 aL kwi ilch ,1_l delta FuncL iotis o1 a L

ehlllwi ! ; oi'" )'L:c '| )

The optical realization suggested in Fig. 2.2 is similar in principle

to a scheme suggested earlier by Huang [2.6]. In the version

in Ref. 2.6 (Fig. 6), input light was passed sequentially through gratings

(corresponding to each mi). However in this prior scheme the lateral posi-

tions of the gratings had to be adjusted to correspond to the Rml inputs to

achieve the proper superposition at the output. In our scheme suggested in

Fig. 2.2 mechanical motion of the gratings is not required.

2.7 CORRELATION FORMULATION

The following general correlation formulation of residue operations will

be more clear now that detailed descriptions of the two converters have been

provided. The designs in Figs. 2.1 and 2.2 will also be clearer from the

following formulation. In fact, an attractive feature of this correlation-

based description is that the system architecture follows directly from the

analytical formulation. Such a correlation formulation is most general,

since it allows realization of residue operations using other technologies.

We have selected a coherent optical realization because it is one of the

easiest to demonstrate and because of the real-time and parallel-processing 4

advantages of such processors.

We consider the decimal-to-residue conversion of X to R miodtilo i.. Now15. L

that te ptilOe-I)0oit ion codint, carrier modulation and aperture control

concepts iave ben described , the general description of the

system as a correlator Ls straightforward. The input is a decitiial nuipber X

represcnted by g(x 0 ) =6(x ()-XAx). The desired residue output R is
1

f(x 2 ) 6 [x2- (X-nni )Ax]. Ihe t't qiil't :;y at cn ittipu IS -CSor ponSC, 1CCded to

convert g into f is

- *tj
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hi(x 0 ) = [ (x0 -nmiAx), (2.13)
n

where h is simply the FT of the grating at P1 described by (2.4).

Since the system's impulse response is real and symmetric, the convolution and
correlation operations are equivalent and hic system's output at P2 is the correla-

tLion of g and It

g 0 It = f f6(x0-XAx) (x_-n iAx + x 2)dx 0

= 6(x0+x 2) 6[x0-(X-nmi)x} dx 0

n

= 6[x 2 - (X-nmi)Ax], (2.14)
n

The minimum positive location x2 of the output delta function in the P2

interval 0 < x2 < (mi-l)Ax (where x2 is now the shift parameter in the

correlation or equivalently the output coordinate) is the desired residue

output Rm . Residue-to-decimal conversion can be formulated similarly.

The general system block diagram for a residue converter is shown in

Fig. 2.3. The input is pulse-position coded by a deflector or other

component, the correlator can be realized using many technologies, the

output window function is equivalent to looking only in the proper region

of output correlation space. The approach allows one to more easily

realize a residue arithmetic system in terms of the many technologies that

2use correlators (CCD, SAW, I L, Integrated optics, etc.). We consider

only coherent optical techniques in the specific system designs to be

described, thereby utilizing the space bandwidth, parallel processing and

real time throughput of such systems. However, the correlation formulation

presented is general enough to allow residue systems to be realized using

other technologies. The specific optical system architectures presented
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SQUARE
WAVE

PULSE
IN POSITION CORHELATOR IN DOW OUT

CODING FNIO

Fig. 2.3 General correlator schematic for a decimal/residue converter.

2FL 2FL

- --- - - - 0 BB0
P0Ll PF L2  2L3 R3

Fig. 2.4 Schematic diagram of a residue arithmetic optical adder.
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and experimentally demonstrated have been included to better convey the

operations required and as examples of transitions from theory to system

architecture to experimental verifications.

2.8 RESIDUE: ARITIDIE.IC OPTICAL ADDI)E

To demonstrate the utility of the correlation formulation of resjidue

arithmetic, we describe thc addition of the two residue numbers R andR

modulo m i as a correlation. We then sketch the design of a residue aritlInietic

adder based on this formulation.

Tme two numbers to be added are rcpresciited in pulse-position coding by

a =6(x 0 - V Ax) (2.15a)

=, 6 (X - R1 Ax) (2.15b)

The desired sum is

I '~ ±i~, I(2.16)

where the subscript m.i denotes that the o)utput of the ;um is the residue

modulo m i . To produce the desired resoiit * we fourm the cor relitl of c .u

the mirror image of I),

a b f A(x-R .A!x)6(x+R ,Ax+x' )LX

I - (RI +,1 ) AX (2.17)

Fromn this, We see that thle output. of the above correlation is a delta

function located in correlation space at x' = (R a +R 1))Ax where x' is the correla-

tion shift parameter. This corro ;pouids to the algebraic sum of the two residue
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numbers pulse-position coded. To convert this sum to the residue modulo mi. we

use a grating and output aperture as in Fig. 2.1 to produce the desired result in

(2.16).

The schematic of an optical system to realize these operations is shown in

Fig. 2.4.The two pulse-position coded input residue numbers to be added are

placed side-by-side in the input plane P)0 of a joint transform correlator. We

describe the transmittance of Po in more conventional optical - notation (in 1-D
0

for the case of one modulus only for simplicity) by

t0 (x) = 6(xO-Xa)+6(xo+xb), (2.18)

where x = R Ax and x = R Ax denote the locations of the two delta functions
a a b b

(for R and R) in P Lens L1 forms the I-D Fourier transform at P1 of t

in the x direction while imaging in the y direction.

The light distribution in 1-D incident on P1 is thus

1 (u) = CXp(j2IUXa)ex p ( - j 2 Tiuxb). (2.19)

An optically addressed spatial light modulator [2.10] (SLM) is placed

at P The transmittance of P1 after exposure is if11
2 or

j 2
7uxa -j27iux b  2

t = e +e

= 2 + 2 cos [27u(x.a+xb)] (2.20)

This SLM is read in reflection from the beam splitter BS in Fig. 2.4. Lens L

in Fig. 2.4 images P1 onto P2. At P2 ' we place a grating whose transmittance in

I-D for the y channel of concern we represent by
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t - 27Tunm. Ax

n

Thi- light distribution leaving P2 is now

t It 2 exp [i21iu~xa+xb-niAx)I (2.22)

Lens L in Fig. 2.4 forms the FT of (2.22) at P This Ppattern is a Bet of3 P3* P3

delta functions,

f 3 6[x 3 - (% a+xb-nim.IAX)j (2.23)

The location of the delta function at I,,of Fig. 2.4 in the range

arrnge toaddtworesidue numbers with N moduli is to allot N chinnls inl

eac haf o plne 0,The N pairs of residue numbers R ;11and R )"1for thle

N moulicanbe ecodedon these N separate chiannels ill Iu1-ie-pos it ion) code.

For his npu diia arangment wewould uiso N g~~n: tNdlocl

spatial frequencies (corresponding Lo thce N Modul i) Onl N Jil1 mil t I') (if Fig. 2.4.

At P 3 of Fig. 24, there will also be N chiannels witl ithe pos;it on of the delta

funct ion on enchi vertical channel proportionalto LOhle rcii idUe of thie sunt of

the corresponding residue numbers ill Llit corres;ponld ing niodo hits of thiat chiannel.

Tile adder elcenent shiowni In Vir .2.4 i!; one of Cie' hasic e ernen tal bnild ing hMocks

of a residue at ilinet i c sy; tci (Al TutuILiphlic c-ii be lCeat i Zd by te esi additions l
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2.9 EXPER I.MI_"NTAL I)MONST1RAT 1 ON

The system of Fig.2.1was assembled to demonstrate and verifj tie decimal/

residue conversion method described earlier.

To keep the unit decimal distance Ax0 in P and the unit residue distance Ax2

in 112 equal to Ax, a 1:1 imaging system was used. The focal lengths of both

cylindrical lenses were f = 300 MM with f 762 mm focal lengths for both

Lc I'S

spherical lenses.

As noted several times earlier, the optimum decimal/residue converter

need not always convert a decimal input number into its N residue numbers. To

demonstratc an alternate scenario and to still demonstrate the basic principal

of decimal/residue conversion as a correlation, the 21 decimal numbers 0 to 20

were used as tile inputs on 21 channels in P0 of Fig.2.l. We-consider the con-

version of these 21 decimal inputs to 21 residue numbers all in the same modulus.

The input used(Fig. 2.5a)consists of an impulse on each of the 21 vertical

channels in P The horizontal position of each of these impulses denotes a
0'

different decimal input number. Since the spacings between impulses on suc-

cessive channels are equal to Ax = 0.7 mm (the unit input decimal distance),

the decimal input on the bottom channel 0 is 0, the number on channel 1 is 1,

etc., up to the top channel which represents the decimal number 20 in pulse-

position code.

This input pattern was produced by superimposing a titled slit over a 1.4

cy/nun grating. The input pulses are then separated by 1/1.4 = 0.7 mm, = Ax.

Since the duty cycle of the 1.4 cy/mm grating was only 6%, the width of

the input pulse is only 0.06 (0.7) mm = 40 Vm or far less than the 0.7 m

decimal limit used. The capacity of the system is thus not even approached

by the example shown.

p.
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At P1 of Fig. 1, we place a grating of spatial frequency ug 10 cy/mm.

From(2.5),we see that Ax and u must satisfyg

Ax = 0.7 mm = U Xf L/m
g L i(2.24)

from which the modu]us corresponding to the grating frequency used is found

to be mi = 7. Thus the system of Fig. ias designed above,will convert the

21 pulse-position coded decimal numbers(Fig. 2.5a) into residue numbers modulo

m. = 7.

The next step is to properly position the output plane P2 aperture.

To do this, we must calibrate the system. Since the residues modulo 7 of the

decimal numbers 0, 7 and 14 are all 0, we cho e input channel 7 for calibration

purposes. With only the input impulhC on channel 7 pre.'en t, I he I'. ttern

in Fig. 2.1consists of a dc, + 1 order, etc. spots of light. We position a

rectangular aperture of width 7Ax in P2 such that the dc spot appc;irs just inside

the left edge of the aperture (when viewed frot the detector plane). The -1

order spot is cut off and lies just outside the edge of this aperture. Ihe

system is now aligned.

With the full input plane P0 pattern(Fig. 2.5a) illuminated, the output

plane P2 pattern of Fig. 2.5b results. It conta ins 2L vertical channl:; (cor-

responding to the decimal numbers 0 to 21) on the 21 input channels). On each

vertical channel, the horizontal position of the output spot (within the

rectangular aperture at P2) lies in one of seven possible locations. These

I-'CAtions ,c orre',poIid to Lhe ScVCn pso i: hib c rc!;idIe itiIhrC-s 0 to 6.

The re.iiduc; modulo 7 of the decimal niimhers 0 to 6 are just 0 to 6

p~ect ivcly. InI th'se case.. th," dc spot simplv shiLts across Lhe I' aperture
2

fon11 loft to righit . 1or tie dociT11I in itt 7, the ie .)ot now shifts; out the

right-iand idh ot the P, apeltrtu-i 1i1d tie t irt-order spot cters the

S:.



2,19

left-hand side of the P2 aperture. 'i'us the correct residue numlber 0 results.
22

Use of a high threshold SL2 (or a thresholded TV monitor) at P2 can restore the

intensity of all spots of light to the same level.

To demonstrate residue-to-decimal conversion, the system of Fig. 2.2. was

assembled with the same lenses used in the above experiment. The conversion

performed was of the residue number (1,1,3) with moduli (3,4,5) into its

decimal equivalent 13. Only three input channels are required for this case.

The unit distance Ax for P0 and P2 of Fig.2.2 was now 0.48 MM. The three

gratings used on the three channels at P1 were at 3,4, and 5 cy/mm (corres-

ponding to the three moduli m] = 3, m2 = 4, and m3 = 5).

The three input residue numbers were pulse-position coded on three

channels at P0 of Fig.2.2 with Ax = 0.48 mm as shown in Fig. 2.6a. The resultant

output plane P 2 pattern in Fig.2.2 is shown in Fig.2.6b. The horizontal loca-

tions of the impulses on each output channel correspond to all of tile pos.Wle

decimal numbers that could be represented by the corresponding residue input

in the specific modulus chosen. As seen in Fig.2.6b, impulses from all three

channels occur only at the horizontal location 13. Thus the decimal equivalent

of the residue input (1,1,3) is founid to be 13 and residue-to-decimal conversion

has been demonstrated.

p.
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2.10 DISCUSSION

The dynamic range of an optical residue arithmetic processor is the

product of the moduli used, this is also the largest number I that can be

represented in residue. As the number of moduli increases, each required

subcalculation (recall that all calculations in all moduli are performed

in parallel) needs only a dynamic range,_ equal to tle modulus chosen. in the

pulse-position coding scheme used, M resolution elements are needed in tue

input plane P0 of Fig. 1 and the output plane P2 of Fig. 2 to represcnt the

full range of decimal numbers possible. Thus the system's most severe

bandwidth and dynamic range requirements occur during the input and output

conversions, since the full dynamic range of the decimal number llMllL be realized

in these stages.

The resolution Ax possible and needed in P0 of Fig. 2.1 is related to M and

the input aperture A by

M = A/Ax (2.25)

To increase M, we must increase A ,nd decrease Ax. 'ite upper limit o A is set

by the lens system following Po", Tihe Lower Limit for Ax is determined by tie

minimum resolvable spot size and geometrical acctracy Witl which Lime illptIt

can be recorded. We investigated the positional accuracy of a FT lens [2.11,1

and found it to be better than 0.06%. In general the accuracy and fide.ity with

which input data can be recorded limits the performance of an optical processor.

Thus, we expect Ax and positional inaccuracies in recording the input data to

limit the dynamic range of an optical residue arithmetic system.

, - ! -V.
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The motivation for considciing an optical implementation of a residue

arithmetic processor was to increase the dynamic range and accuracy obtainable

in an optical system. However, the approximately 1000 point linear SBWP

presently obtainable with scanners and spatial light modulators [2.10] still does

not permit more than 10-bit dynamic range (if the pulse-position coding

scheme and optical systems described earlier are used). Two approaches by

which increased input space-bandwidth and hence system dynamic range can be

obtained are now discussed.

The first is the use of input numbers in binary rather than decimal nota-

tion. For an input dynamic range of 64,000 we require 16 bits to represent

the input data in binary notation(compared to a linear input SBWP of 64,000

for the pulse-position coded decimal representation of the largest input

number). However, a binary/residue converter is now required. Such an optical

system can be realized using the joint transform correlator adder of Fig. 2.4

for B (equal to the number of bits) cycles. To visualize such a system, recall

that N in decimal notation is related to its binary representation (a0,al,a2.-

aB) by

B b
N 7 a db2

n =0

where each ab is 0 or I. In residue notation N modulo mi is

INIm [a0I201 + a1 12
11mi + a21221 . + .. ] m (2.26)

rrom this, we realize that N can be represented modulo m. as the residue sum

of B numbers 2b in res idue, and that these 2b modulo m. values are known in

advance. In essence, we can realize( 2 . 20)by adding 0 or 2 to a running

residue sum depending on whether the corresponding binary bit of N is 0 or. 1.

or
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The resultant output after the addition of the most significant bit is then

INi  in residue modulo mi. Realization of this conversion by the cyclic

operation of one adder of the type shown in Fig. 2.4 may be preferable to a

cascade of B-i such adders.

However, an alternate method exists whereby the dynamic range of N can be

increased, without exceeding the assumed input linear SBWP of 1000.

This approach involves raster recording the input data with zero-retrace time

and use of the folded spectrum optical spectrum analyzer [2.12]. In the optical

residue arithmetic version of such a high dynamic range raster recorded

decimal/residue converter, pulse position coding of N is still employed.

However K lines at P0 of Fig. 2.1 are used to represent N as

Nx - KN X0 = (N-KN )x0 . (2.27)
0 LO L 0"

In other words, for a maximum N = 10,000 and a linear positional or

resolutional N = 1000, we use K = 10 lines at P to represent N. If
L 0

0 < N < 1000, a delta function of light appears on line K = 1. If 1000 < N < 2000,

the delta function appears on line K = 2 at PO' etc. If we use N = nm. + R1 m.
1

and assume KN = rm + R' , then
L i m'i

N - KN = (n-r)m.+R -R' (2.28)
L 1 mi mi1

which reduces to

R = (N-KNL) - (n-r)m. 2.29)
1.m

when NL is a multiple of mi, since then R' = 0.L 1 m.
1

As a numerical example, consider the conversion of N = 168 to residue

modulo 5 assuming a maximum NL = 50. In our raster recorded version of the

input P0 pattern in Fig.2.1,the delta function corresponding to N = 168 occurs

18 spaces (18Ax) from the left edge of the k = 4 line in P Since N = 50

is an integer multiple of mi  5, N 0 to 49 appear on line k =1, N 49 to

p



2.24

99 appear on line 2, etc. Then,

185= (168-150) 5 168 5-150 5 168 5'(2.30)

The schematic diagram for such a system is shown in Fig. 2.7. With K

lines required at P 0to represent N, the m grating at P 1is also replicated

for K lines (assuming 1:1 imaging optics for L1) A second grating at a spatial

frequency corresponding to the second m i is recorded on the next K lines at PI

(or alternatively a grating at one u gi is present at P1I depending upon the

system scenario). In all cases only one spot appears within the first K lines

of thle P aperture, etc. anSI thus as before the horizontal locations of the
2

peaks of light at P2 correspond to the desired Ri The vertical P2 axis

is now partitioned into sets of K lines with each set corresponding to one

R . Since thle two-dimensional SBWP of available spatial light modulators [ .10]
M.

is so large, this utilization of available real estate at P0 is warranted if

the desired system dynamic range is to be realized. One shortcoming of the

system of Fig. 2.7 is the low usable input light level.

This can be improved if the decimal input number is used to control an

oscillator to raster record thle Input as a signal at frequency f N proportional

to N on K lines. The 2-D Fourier transform of such a raster-recorded input

pattern contains coarse and fine frequency axes. The location of thle output

peak along thle fine frequency axis is the desired residue modulo the input

horizontal line scan rate [ 2. 12 ] .The modulus i s thus set by the input line scan

rate and a set of gratings is not required.

At he utut lan P2 OfFigs. 2.1 or 2.7, another accuracy issue arises.

Positional accuracy represents no major problem since only m.i resolution

points per channel are needed. Rather, thle diffraction efficiency of the grating

used at P 1 must be sufficient to produce enough detectable light in the M/m i-th

order of the grating. The problem canl be relieved by use of larger m.i values,

by use (if blazed or hteached gratings, etc. Thle accuracy of the spatial frequency
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of this grating will also affect performance but this is not expected to be

a major error source since the grating need be produced only once.

Since the aperture of the grating at P determines the spot size in the

output plane P2' we must insure that tiis aperture remains above some minimum

value for all beams emerging from different locations in P that strike P at
0 1

different angles.

For simplicity in the analyses used, we assumed equal unit distances

Ax = Ax = Ax in P and 12 . InFi. 2 .1 the P resolion lusp:t be superb,
0 20F.rcoltini

however there is no reason to retain fine resolut ion in i', sLiuce only i pOints

per line are needed in P2" Thus, in practice choosing mi large and Ax2 > Ax0

should improve performance. However, titilization of tie available space

bandwidth (SB1) and a full system dcsigu witl determiue the opt imut v.,1t, s.

We demonstrate by example this latter point and why the architecture of the

converters and adder shown may be altered. Consider the input SBW require-

ments for a residue adder to add in paraillel 100 pairs of number s ech (if wiicit

is described in residue by N = 11 mduli (with the largest modulus equal to 31).

Since max(ill) 31 and N = 11, we rcquire a SIM = 343 to ful ly represenit one number

in residue. To represent 100 numbers, we require a SIW = 34,300. Tius to add

two such pairs of 100 decimal numbers, we require an input SBW = 08,600.

This value may seem quite formidable and in fact it is for nlany ytms.

However, tile input SBW achiievable ill real time on a spatial lighlt modulator[2.10]

3 3 = 6. , ;
in a colerent optical proces;sor easily exceeds 10 x 10 = 106. Tius the input

SB¢ required for tilt, above exahpie leavcs 931,400 of the 10 6 poiilc input

pixels tu;cd. A:; 01h; IMlc] i~cal, vx~miple Ialwr vividly O'tle

iulCrC.a1s-'d SqBW Ueqtlirl'lltl:; of ait os'i,ktie arilhmet ic :;.y';tL'fll '(lr s( ll o peiroblem

itA
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&

INPUT Mi

LASER

LIGHT

P0 LIC LIS P, LC L2S P2

Fig. 2.7 Schematic diagram ofahigh dynamicrag
decimal to residue converter using raster
recorded input data.

AO DETECTOR
CELL ARRAY

PO -nm1~) 1 P2

P1

Fig. Z.8 Large time bandwidth decimal-to-residue converter.
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in an optical residue arithmetic system. Thus, utilization of the large avail-

able input SBW of an optical processor will definitely require far more elaborate

Iinput formats than those described earlier.

In the numerical example presented above in which N = 11 moduli with

max(mi) - 21, the largest input number that can be represented is about 242

Thus, this system with eleven moduli has the equivalent accuracy and dynamic

range of a 42-bit digital computer.

The most promising design we have found for a high dynamic range decimal-

to-residue converter is shown in Fig. 2.8. In this system, the output from

j an LED source is expanded by lens L1 and passed through an acousto-optic (AO)

cell at P1 . The wavefront leaving P1 is then imaged onto a detector array at

P 2 by lens L2.

To utilize this system topology as a decimal-to-residue converter, we

temporally modulate the LED (in time) with a pulse of width At occuring at

time NAt, where N is the input decimal number. The light output from the LED

and hence the signal incident on the AO cell is thus

u0 (t) = 6(t-NAt) . (2.31)

We choose the acoustic time length of the AO cell to be miAt and describe the

signal in the AO cell (as a function of time t and distance x across the PI

aperture) by

uI(t) = 6(x-n MiAt+t) . (2.32)
n

This represents a pulse of width At and period MiAt traveling in time t and

distance x across P V

The light distribution leaving P1 and incident on P2 is thus the product

of (2.31) and (2.32). The detector array at P2 integrates this signal for a

time MiAt. The output at P2 is thus

1 2
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[(n+l)M 1-l]At

u2(x) f 6(t-NAt) 6(x-n MiAt+t) dt = 6[x-(N-n Mi)At] (2.33)

n n M iAt

Only one pulse will be present somewhere in the AO line when the LED pulses

on. Thus, only one of the Mi detectors at P2 detects energy. Its location x

is proportional to N is residue modulo Mi as shown in (2.33). The integration

time of the photodetectors is MiAt (not NAt). The photodetector outputs are

threshold detected and cleared each MiAt seconds. Thus detector noise which

will limit the system's dynamic range normally in a time integrating correlator,

does not affect this system. The pulse itself present on the detector is only

of duration At, but the position of the pulse within the AO cell is not known

(hence the MiAt integration time at the detector). The time aperture length

of the AO cell need be only MiAt. Thus the system is most conducive to direct

realization.

2.11 ALTERNATE APPROACHES TO RESIDUE ARITHMETIC PROCESSORS

The prior correlation-based approach to residue arithmetic processors are

original and advantageous compared to others. However, for completeness, we

summarize the residue work of other (most notably A. Huang, et al., (2.7,2.8])

and an alternate mapping approach to residue computations. When two residue

numbers are operated on (added, subtracted, multiplied, or converted), a fixed

map or look up table can be constructed that automatically "looks up" the out-

put value given the inputs and the operation to be performed. This look-up-

table approach is possible in residue arithmetic because of the limited dynamic

range of all operations (in any modulus, the accuracy required equals the

modulus). Mapping approaches are directly realizable using ROM (read-only

memory) digital integrated circuits as shown in Fig. 2.9. The approach to a

larger system of this type is easily pipelined to produce high speed computa-

tions in parallel.

l i _"_"
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The most difficult computations in any residue system are the conversions

from decimal to residue at the input and from residue to decimal notation at

the output. In the mapping approach, the output conversion is of paramount

concern since it cannot easily be pipelined. This occurs because the results

of one computation are needed for the next calculation.

One optical residue arithmetic system using maps is shown [2.7,2.8] in

Fig. 2.10. In this system, the positions of the horizontal and vertical slits

atP0 an 1 select one element of the look up table at P 2 that is imaged onto

the output at P 3*This 2-D map scheme is of limited use. Alterable l-D maps

(Fig. 2.11) are preferable. In these systems in Fig. 2.11, we assume the

two numbers are to be added. In such schemes [2.7,2.8], one of the residue numbers

(in one modulus)to be added is used to alter the mapping topology as shown in the

two examples in Fig. 2.11 (adding 1 and 2 to a ninput residue nunber modulo 5).

One of the most attractive methods of realizing an alterable map as in

Fig. 2.11 is by integrated optical switches. An example of such a map to add

+3 and +4 to an input residue number modulo 5 is shown in Fig. 2.12. In these

devices, each input is a focused laser beam at an input position proportional to

the input residue number. The diagonal lines in Fig. 2.12 represent reflecting

surfaces that cause the location of the output beam to occur at a position

proportional to the appropriate output residue number (pulse position coded).

The system shown adds 4 to the residue input number modulo 6. For example,1 ~ an input at 0 exits at 4 (the sum of 0 and 4 is 4). An input at 4 exits at

2 (the sum of 4and 4is 8or2odulo 6).

Tsai at Carnegie-Mellon University [2.131 has studied such integrated

optical switches. However, considerable research remains before such systems

appear realizable. Issues,such as the cascading of such switches and a large
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OUTPUTS

Input 1 - - -

Input 2

Fig. 2.9 Simplified concept of a map using a ROM
(Read only memory) or similar element.

P P"

0 O O
HORIZ. IMAGING VERT IMAGING LOOK-UP INTEGR. OUTPUT
SLIT LENS SLIT LENS TABLE LENS PLANE

Fig. 2.10 Optical system to realize a fixed map.

I 3- -3 U I 3 3 u
N T P T
P 2  2 P U P
U 1 1 U T 1 1 U
T T S T
s 0 -- 0 s

(a) (b)

Fig. 2.11 Simple alterable maps to add 1 (Fig. a) or 2 (Fig. b)
to an input residue number modulo 5.
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reduction in their cost remain to be solved, before the components

for such an approach are available and before a final design can be produced.

Similar remarks can be advanced on other alterable map conceptual designs

[2.7,2.8] using other technologies.

2.12 RESIDUE MULTIPLICATION

Addition and conversion are cyclic in a residue arithmetic computer

(using maps as well as our correlation approach). However, multiplication is

not cyclic (incrementing the input by I does not increment the output cyclically

by 1). For example, in Fig. 2.13a we show the map for multiplication of an

input residue number by 2 modulo 4. Residue multiplication can be made cyclic

as shown in Fig. 2.13b by performing an input (map 1) and output (map 2) permu-

tation leaving the multiplication map cyclic. The general approach to be used

for the permutations (maps ] and 2 in Fig. 2 .13b) that yield a cyclic multi-

plication remains to be fully analyzed. Residue multiplication can thus be

performed as in Fig. 2.13b or by cascading M -i adders. Such a cascading

approach is feasible in a residue system because the moduli Mi are small num-

bers. It can also be realized on a single SLM using feedback or integrated

optics.

2.13 RESIDUE ARITHMETIC MATRIX MULTIPLIER

The basic residue arithmetic element in a phased array radar processor

is a matrix multiplier. In prior sections, we have described several imple-

mentations of the basic building blocks of a residue arithmetic processor

(converters, adders, and multipliers) and experimental .emonstrations of

several of these operations. From these components the block diagram of a

residue arithmetic matrix multiplier in Fig. 2.14 follows directly. The pipe-

lined system design shown in Fig. 2.14 requires parallel computations in real

't
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INPUT INPUT

S012345

T 1 -
T 1- h. W

04 0*

(a) Add 3 to input (b) Add 4 to input

Fig. 2.12 Integrated optical alterable map to add 3 and 4
to an input residue number modulo 6.

Tsai at CMU [2.13] has been studying such integrated optical

switches. However, considerable research remains before such systems

appear realizable. Issues such as the cascading of such switches and

a large reduction in their cost remains (among other efforts) before

the components for such an approach are available and before a final

design can be produced. Similar remarks can be advanced on other

alterable map conceptual designs [2.7,2.8] using other technologies.

N U N T
p2- 2 T P 2p

p P
U P U U
T U T TX p T cylc mapxba ma"p cyclic1 yfiap

(a) (b)

Fig. 2.13 Multiplication (Fig. a) as a noncyclic operation and how
it can be made cyclic (Fig. b) by input and output
permutations (maps 1 and 2).
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1residuereiursde
converter -mliieU

N
P P

U residue residue N aerresiu U
s converter Smlile ov

Fig. 2.14 Block diagram of a resiJije arithmetic matrix multiplier
~1J I for adapt ive phased arrav radar.

INPUTS OUTPUT

LIF0 OPTICAL --

- PROCESSOR --

REF MASK

Fig. 2. 15 Simplified diagram of a re.sidiji' arithmetic optical
matrix mult iplier.
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time. Integration of the component subsystems using LSI, CCD, Integrated

Optics, etc. is the key to such an approach, with the hope that interconnection

problems do not arise. Only added research can answer such questions.

A second approach (Fig. 2.15) that we advocate utilizes the vast space

bandwidth SBW available in an 2-D optical processor and the parallel nature of

such systems. In this case, the major problem becomes one of how to arrange

and format the input SLM data to adequately use the available SBW product to

perform the required matrix multiplication with minimum complexity (without

feedback and using a single SDI).

2.14 SUMMARY AND CONCLUSIONS

The need for a novel and fresh processing approach to the adaptive phased

array problem merits the use of a new number system such as residue arithmetic.

As we have shown, residue arithmetic offers the advantages of: parallel pro-

cessing, format control,pipelining, high speed, and increased accuracy and

dynamic range. Thus, it has great potential for use, in situations where a high

Computational load is required, such as adaptive phased array radars. Thle major

problem areas in such a processor are the conversions from analog or digital

input data into residue and back. We thus emphasized these problem areas in our

experimental work. We formulated a novel correlat ion approacii that is directly

implementable in many' available technologies. We have likewise reviewed other

approaches uising maps, integrated Optics, etc.

From this phase of our program we conclude: (1) that residue arithmetic

offers the fast parallel and accurate processing required for adaptive array

radar; (2) that pulse position modulation should be used; (3) that a correlation-

based formulation is more easily implementable than alternate techniques (for

practical reasons); (4) that added research is needed on the light losses

present in certain approaches and on thle input format needed to utilize the
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vast SBWP and parallel processing of an optical processor and the associated

optical system to realize a simple processor; and (5) that the state-of-the-

art and expected time frame at which cascaded integrated optics switches will

be available appears to be far too long for such an approach to be considered

at present.

We thus recommend that RADC remain abreast of advances in related

technologies such as SAW, AO, CCD, ROM, Integrated Optics, etc. and uses the

expected time frame within which these component technologies will have

matured to be of use in the fabrication of a residue arithmetic and to allow

proper architectural designs for such a system dedicated to the adaptive

phased array problem. We strongly advocate that an all optical approach be

pursued (as opposed to one in which 1-D devices are paralleled and pipelined)

in which the input format and SBWP issues advanced in point (4) above are

specifically addressed.

&LAO.
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CHAPTER 3

COHERENT OPTICAL CORRELATOR (COC) FOR ADAPTIVE PROCESSING

3.1 INTRODUCTION

An adaptive array is intended to cancel the effect of noise background

and thus enhance target detection etc. This process involves two steps:

estimation of the ambient noise field and determining the weighting coeffi-

cients that minimize the effects of the noise field. In this chapter, we

consider use of a coherent optical correlator (COC) processor to estimate the

noise field. We then discuss the methods by which the desired weights for

the array elements can be obtained from this output noise field distribution.

In Sect. 3.2, we discuss the basic operation of the COC system and its

use in estimating the noise distribution. In Sect. 3.3, we introduce two

different COC architectures and describe the system assembled. Different

models for the noise sources, the method used to simulate them and the noise

estimates obtained from simulations are then presented in Sect. 3.4. In

Sect. 3.5, we consider the COC system from a statistical view point and

provide analytical expressions for the accuaracy of the noise estimate

obtained and the available resolution of such a system. In Sect. 3.6, several

important post processing issues involving the estimation of the weights are

addressed. Experimental results are included in Sect. 3.7 and our conclusions

are advanced in Sect. 3.8.

3.2 BASIC OPERATION

The COC system which we designed and fabricated computes the angular

distribution of the noise field as its output. In this section, we consider

the basic operation of such a COC system.
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We consider an antenna system with N elements that receive noise signals.

We assume the noise distribution to be far from the antenna and thus assume

plane noise wave fronts incident on the array. As a result, the signals received

at different array elements differ only by time delays. Since the noise field

originating at different angular positions in the far field results in different

element-to-element time delays at the antenna, the desired N (e) angular noise

field distribution can be estimated by determining these delays present in the

received signals.

Let us consider the situation where the far field noise consist of M

discrete noise soui-es, each at a different angle 6 and with a different power
f

N . The notation used is shown in Table 3.1. We consider the signal received
m

at the central element of the array as the reference fR (t). The COC system

forms the correlation of f with all other received array signals f . UsingR n

the notation of Table 3.1, the signal received at the n th element can be

related to the reference signal by

M
f n(t) = J fRm (t-rm) (3.1a)

nn~

M

fRN(t) = IfRmf (t), (3.1b)

where

T m- k(R-n)d sin 0m ,  (3.1c)

and k = 2 n/X. When the reference signal is correlated with the signal received

at the n t.harray element, we obtain

M MfRMt) fn(t) =[I fm (t-Tmn)]G)[I fm (t0]

Rn ninMnR

mm

M M t ) f t T .( 3 1

... If, -- j
m " .. . . " .. .. .. I I I~ I l lm -- . .. . . .. . . .. . I . .. .. .. .. . . .. .. " --
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Table 3.1 Phased Array Radar Notation

N Number of phased array elements k Wave number, k - 2w/

n A given phased array element M Number of noise sources

f Received signal at element n m A given noise sourcen

f f due to a source at angle e e Angle of noise source m
rm n m m

d Center-to-center separation of array elements s Noise source m at angle em m

A Wavelength of radiation

We assume that the statistical characteristics of the noise sources at

different angular locations are independent. The cross correlation of f Rm(t)

and f (t) is thus zero unless m = j and (3.2) simplifies to
Ri

M
fR(t) 2 fn(t) [f m(t)G f m(t-Tn)

m
M
I Cm (t-T ). (3.3)

From (3.3), we see that the correlation of fR (t) and f (t) is the

summation of M noise signal auto correlations, each shifted by an amount T

given by (3.1). When these N correlations are performed in a multichannel

optical correlator, the output plane light pattern of Fig. 3.1 results. The

vertical axis in Fig. 3.1 represents array elements number n, whereas the

horizontal axis represents the time delay.

444
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If the correlation peak due to each noise source is sharp and if the array

elements are uniformly placed along a line, the correlation peaks corresponding to

noise source m form a line at an angle proportional to eM . To see this we

evaluate (3.3) at a fixed point Tpn in the output plane along the n th channel

and obtain

Mf Rt)D fn it T C m (pTPCTmn)-C p (0) (3.4)fR(t) f n Ct) 1 Ct r )= CCo

pn m

where the contribution of terms other than C (o) in the summation are ignored
p

because of the sharp correlations.

Thus, integrating along these correlation peaks, we obtain an estimate

of the noise power as a function of angle. It should be noted that a multi-

channel correlator followed by an integration along 6 provides information

only about the noise power and not the noise bandwidth. Although N () does

not yield complete noise field information, we often can assume that the noise

bandwidth is identical to that of the antenna and thus obtain all of the desired

information.

To provide the integration along different e lines in the output plane

of Fig. 3.1, three candidate methods are suggested. The first involves the use

of a rotating slit whose light output is integrated onto a detector using a

2-D Fourier transform lens. The disadvantages of this system are the slit

width (which causes loss of resolution) and the mechanical motion required

(which reduces the processor's throughput speed). In the demonstration stages

of this project, a slit is still useful.

The second method uses a detector with wedged shaped elements with parallel

electrical outputs mounted in the output plane of the optical correlator. The
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outputs from this detector array are estimates of the light in each sector and

hence of the noise verses e. This system eliminates the mechanical motion

disadvantage of the rotating slit system, but the number of angles that can

be isolated is still limited by detector technology.

The third method uses a polar camera. In this system, the output plane

light distribution is sampled at fine intervals along the two cartesian

coordinates and the camera's supportive electronic processor then coverts this

input light distribution into (p, 8) coordinates. By integrating along p,

we can then obtain the output noise estimate as a function of e as before.

This method nay be suitable for the final stage of the COC system, but it

requires too extensive support electronics to be included at this point.

Thus, for the initial experiments, a mechanical rotating slit was used and for

the final system a specially fabricated wedge-shape detector appears to be the

best choice.

A block diagram of the COC system is shown in Fig. 3.2. It is described

in more detail in Sect. 3.3.

3.3 OPTICAL SYSTEM

In this section, we consider two of the COC optical systems consideredI and explain their operation. We then describe the system assembled and the

reasons for it as well as the components used.

3.*3.1 JOINT TRANSFORM~ CORRELATOR (JTC)

The JTC is shown in Fig. 3.3. In this system, the same reference signal

s is recorded on all channels in one half of plane P 1and the other received

signals a I1aN are written in the other half of plane P'1 with a center-to-center

law&*
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separation of "2a". Since the system uses 1-D operations, we can consider what

occurs to each line separately. The light transmittance along the n th line

in P is

P ln(X) Sn(x-a) + sR(X + a). (3.5)

Lens system L forms the 1-D Fourier transform of Pln (x) in plane P2. When

this pattern is recorded at P2, the subsequent transmittance of P is
2,

P(f) - IS(f)ej21fa + SR(f)e al (3.6)

where S (f) is the Fourier transform of the signal s (x). This recording is

placed in pLane P2 and its 1-D Fourier transform (Fr) in x is produced at P3

by L2. At the output plane P3 ' we obtain

P3n(f) -a{ISn(f)12 + IsR(f)1 2}  at x - 0

+ {Sn(f) S*(f)} at x - -2a

+ {S() Sf at x - +2a (3.7)

From (3.7), we see that the desired correlation is located at x - +2a.

The three terms (3.7) can be separated in the output plane if "a" is chosen

larger than 2b, where b is the width of each signal recording in Pl" The

disadvantage of this system is that the full space bandwidth product (SBW)

possible in P1 is not utilized. Similarly the SBW and aperture requirements

of the input spatial light modulator required at P1 and of the lens system are

much more stringent for this joint transform correlator topology.

We thus reject this system in favor of the FPC system of Sect. 3.3.2.

A,
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IN IDFT BS JTP IDFT OUT

S
R

Si

C' Cot

SNr*

P L IRead ae 2 Lp

Fig. 3.3 Joint transform optical correlator for adaptive radar processing.
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Fig. 3.4 Frequency plane optical cort-clator for adaptive radar processing.
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3.3.2 FREQUENCY PLANE CORRELATOR (FPC)

The FPC system is shown schematically in Fig. 3.4. The lens system L and

L2 are l-D FT systems. At P2 9 we record SR on all lines using holographic

techniques. When the different received signals al -N are written on different

channels in plane P., the light leaving P2 is

P2 (f) - SRf) Sn(f). (3.8)

Lens system L2 performs a 1-D FT of (3.8) along the f axis. This results

in the desired multi-channel correlations in the output plane P3. The output

will contain other undesired terms, but these can easily be separated from the

correlation by proper choice of the signal to reference beam angle used when

forming the P2 pattern. In this system, the SBW of the P1 plane material can

be much better utilized than in the JTC system. This FPC system also has less

stringent lens requirements then does the JTC one. Because of these reasons,

the FPC system was chosen for the COC adaptive processor.

3.3.3 SYSTEM DESIGN

The lay out of the FPC system that we assembled is shown in Fig. 3.5. A

50m W helium-neon laser (X = 633nm) was used as the coherent light source. This

light output was divided into reference and signal beam paths by the beam splitter

(BS) and mirrors (M) shown. The lenses used are described in Table 3.2. The

angle of the reference plane wave illumination was chosen to be 150.

5-!
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Table 3.2

Component Specification

Component Specification

01, 02 Magnification 5x

PH 1, PH 2 l01 Pinhole

CL 1 Focal Length 495 mm

CL 2 Focal Length 762 1n

CYL 1, CYL 2 Focal Length f 1  200 mm

SL 1, SL 2 Focal Lengths f 2 762 mm

Integrating Slit 2.5 x Objective, 50P x 1250P Slit Probe

The P2 pattern in Fig. 3.4 is a matched spatial filter (MSF). It is

formed with sR recorded on all lines in P1 by recording the interference of the

FT SR of sR and the reference beam. For all experiments, the inputs at PI were

placed in a liquid gate (LG) and the MSF at P2 was recorded on a holographic

plate. The BS was orientated so that the ratio of the reference power to

signal power at the dominant carrier spatial frequency was close to unity. This

yields the maximum modulation or fringe constrast in the MSF. A wedge/ring detector

was placed at P2 and the BS was adjusted during MSF synthesis to achieve equal

beam balance and modulation of the MSF. The exposure time was chosen to produce

a bias exposure with a bias transmittance of 0.5.

The MSF recording was then developed in D-19 solution for five minutes at

70 F. After the emulsion was dried, the holographic plate was placed in a

*4
-L , . . .... .
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hologram plate holder (HPH) and the reference beam was blocked. The signals

a - are recorded on different lines in P1 (on film during initial experiments)

which was then placed in the LG. The resulting multichannel correlation pattern

in n (3.3) appears in the output plane P3 where it is integrated in 8 by a slit.

This integrated intensity is then recorded versus e by the support electronics.

3.4 NOISE MODELS

In this section, we describe the computer simulation used to model the

COC system and to model the different noise sources and noise conditions

considered for the array antenna. The FORTRAN routine that performs the

multi-channel correlation is included in the Appendix.

3.4.1 SOFTWARE

The optical COC multi-channel correlator was digitally simulated in

FORTRAN. 1he MAIN program generates single frequency jammer signals of the

desired amplitude and frequency. The subroutine CORREL performs the desired

correlation and PLOT2D is used to produce a 2-D display of the output. The

routine NOISAN plots the noise distribution as a function of angle. It utilizes

the subroutine PLOTID to produce the 1-D output displays. The subroutine

COPREL produces the correlation of the two sequences by forming the FFT of

each, the product of these FTTs, and the inverse FFT of the result using a

circular correlation. By appending a sufficient number of zeros to both

sequences, the desired linear correlaLion results.

3.4.2 SIMULATION NOISE MODEL

As our first noise model, we consider the received signals from one noise

source at a single frequency and an angle of 60a to be present at the received

. .. .. - ' I I i - I
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elements of an N = 39 element array. A total of 128 samples of each of the

received signals were calculated with the sampling rate chosen so that these

128 samples covered 20 cycles of the sinusoidal noise signal. From (3.3), the

output along each channel is

fR( f. = C(t-Tn) (3.9)

= Sin{27f(t-nT)}

where N = -50...0... 50 and T is the delay from element - to - element and f is

the frequency of the narrowband noise source. For this example, the output

correlation consists of very diffusely spread light alternating at the frequency

f. The resultant simulated output correlation surface is shown in Fig. 3.6 from

which the sinewave as an envelope over a bias level is apparent. This bias level

is used to simulate the fact that such biasing is necessary when recording any

signal on film. Integration of the output pattern in Fig. 3.6 along different

angles results in the noise estimate N (0). The results of this are shown in

Fig. 3.7, from which we notice a single peak at the angle 0 = 600 of the noise

source as expected.

3.4.3 NARROWBAND TWO NOISE SOURCE MODEL

As our second noise model, we choose 2 single frequency noise sources at

angles 1 = -45* and 02 = +45*. We choose the two frequencies so that they do

not cross correlate. We also modulated these two single frequencies by a small

amount of narrowband noise so that they would produce sharper correlation peaks

in the output than would pure single frequency noise sources. This noise model

also better approximates the expected situation than does the first model.

The resultant output correlation plane pattern is shown in Fig. 3.8. It

Contains two lines of correlation peaks at angles + 45'. It is obvious from

Fig. 3.8 that the slit angular integrition of this output plane pattern will

result in two large peaks at 0 = + 450
. 

This noise estimate, obtained from

• FlA
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I

Fig. 3.8, is shown in Fig. 3.9. Its pattern is as expected and displays two

prominent peaks at the correct locations.

3.4.4 STOCHASTIC NOISE MODEL

The signals we have considered thusfar are deterministic and do not fully

reflect the random nature of the actual signals expected. In our third simulation,

we model each of the two noise sources by random sequences to better simulate the

presence of two uncorrelated noise sources. To produce such signals, a long

random sequence of 5000 points was generated using the RAN function in Fortran.

The first 2000 points were chosen as one sequence and the last 2000 points as the

other sequence. The resultant two signals are the two uncorrelated sequences

desired.

The two digital random sequences obtained have white spectra. This was

confirmed by calculation. The desired received radar signals are band limited

noise patterns. Since in the optical experiments, we will record these signals

on film using a film recorder with constant modulation out to 15 cy/mm spatial

frequency, we chose to model the bandpass noise signals with a spatial frequency

spectrum between 5-15 cy/mm. Since the film recorder spots are spaced at

intervals of 10 pm, the corresponding Nyquist frequency is 1/20 w = 50 cy/mm

and any attempt to record higher frequencies will result in aliasing. We let

the digital radial frequency of + 1.0 7 correspond to + 50 cy/mm spatial fre-

quency. To produce the desired noise spectrum with flat response over the

5-15 cy/mm band and 0 elsewhere, we used a digital filter described below.

The uniformly distributed white noise sequences were passed through. a low-

pass digital filter with extent from -5 cy/mm (-0.1 7) to +5 cy/mm (+ 0.1 7).

The low pass filtered output was then multiplied by a sinusoidal frequency

10 cy/,nm (0.2 7) to shift the bandpass spectrum to the desired center spatial

frequency. The design of the digital filter is discussed below.

+ ++ ..
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3.4.5 DESIGN OF THE DIGITAL LOW-PASS FILTER

Following Oppenheim and Schafer, we use a technique of bilinear transformation

and a Butterworth filter to realize the digital low-pass filter. Since the cutoff

frequency desired is 0.1 7T, we introduce the condition that ripple in the passband

be less than 1 dB, while in the stop band we require attenuation of more than

20 dB, i.e.

20 logl0 IHa(e0l)I J.-l (3.10a)

and

20 logl0 IHa (eJ0"IS7) 4 -20 (3.10b)

The Butterworth filter is described by

HIa(jaA 2 . 1
1 + (Q/no)S (3.1)

c

where N is the order of the filter. Solving (3.10) using (3.11), we obtain

N = 8 and 0 = 0.3446824. For this value of 0 , all specifications are met.
c

The poles of the digital filter are found by choosing 8 left half plane poles

in the s-plane that are uniformly spaced on a circle of radius Q .c

To obtain H (Z), we first find its digital transfer function in terms of

the z-transform using the bilinear transformation

s = 2(1-z-1 (3.12)
(l+z

- )

The resultant transfer function is very complex, but it can be separated into

the product of 4 cascaded functions, which are easier to implement both from

software and from hardware viewpoints. We thus write H(z) as
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H(z) 1 (z) H 2  3(z) H3(Z) H (z) (3.13)4

where

HI(Z) = 0.023615(1+z -) 2/[1-1.769z+O.8774z 
- 2

H2 (z) - 0.023615(l+z -) 2/[1-1.589z 1+.6864z ]
2 5 8 9z15 l ~ 1  -1 .6 8 -2

H3(z) - 0.023615(1+z-) 2/[l-l.4744z- +0.5647z
- 2

-12 -1-2H4 (z) - 0.023615(1+z- ) /[1-l04189z-l+0.5057z -  (3.14)

Digital filtering is usually performed in a computer, thus the white noise

sequence x(n) is passed through H1 to produce an output

y(n) - 1.769 y(n-l)-0.8779 y(n-2)+0.023615[x(n)+2x(n-l)+x(n-2)] (3.15)

We then pass y(n) through H2, H3 and multiply the result by cos (0.2 7n) to

obtain the desired bandpass noise sequence. This was done. To verify the nature

of the resultant noise sequences obtained, we performed a 2048 point FFT on the

noise sequence. The magnitude spectrum obtained is shown in Fig. 3.10. A noisy

spectrum rather than a smooth one was obtained because of the finite precision

of the FFT. However, we notice that the spectrum is limited to the desired

frequency band and has above 20 dB rejection in the stop band and a fairly

uniform response in the passband.

The noise sequence as described above was recorded on film using our film

recorder and used in the optical experiments described in Section 3.7. We defer

further discussion of these results until Section 3.7.

3.5 ACCURACY OF THE COC NOISE ESTIMATE

In this section, we analyze the COC noise estimaLion method from a statistical

viewpoint. We define the estimation SNR when one noise source is present and

aA
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0. Fig. 3.10 Digital spectrum of stochastic noise model. 40
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obtain the resolution performance when two noise sources are present.

Let the receiving array consist of N (odd number) antenna elements and let

the noise source be at an angle e. If s (t) is the signal received at the

central element, the signal received at the i th element is

s i~ W -s(t-Ti1), (3.16)

where i - - (N-1)/2... 0... (N-I)/2 and

Ti . i (d cos e)/c. (3.17)

When the array elements are spaced on a line at uniform intervals d, the

N optical correlations yield

T/2

-T/2

T/2
= f s W (t + T- )dt, (3.18)

-T/2

where T is the integrating aperture or the time interval over which the signal

is obtained (whichever is smaller). As an estimate of the noise distribution,

we integrate the output along radial lines and obtain the estimate

N1N(O)i C i (ai)

N
I
1 T/2,

1 N1 (t) s(t + Bi - 8 i)dt, (3.19)

n - T/2where (N - 1)/2 - ,, and B = (d cos e)/c is proportional to the correct angle.
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A * *
An ideal estimate N (8) will be zero for 8 6 8 and will peak at 8 = •

Let us assume that a (t) is a sample realization from a zero mean, stationary,

stochastic process. Then the average noise estimate is

A N1 T/2 ,
N($) -E I f s(t) s(t+i - i )dt]

i -N1 -T/2

1 T/2

" I- -fR i- ie*)dt
i - -N -T22

SN
1

- T [ Rs[i(8-8*)], (3.20)
i -NIS

where Rs(T) is the auto correlation function of the signal process. Since R (0)

is always greater than Rs(T) for T 0, we see that N(O) is maximum at 8 = 8 as

is desired. The sharpness of this correlation peak can be characterized by the

SNR with a larger value of SNR resulting in a sharper correlation peak and hence

a better estimate of the location of the noise source. For SNR, we write

A* 2

Var{i(B)I> (3.21)

From (3.19), we can write

A , N

E(N(8 )} = T R (0) = TNR (0). (3.22)
i = -N1 s

The variance can be estimated as below

A T/2
Var[N() 8 > * -fJ (R (t-u)R s[t-u+(8- 8) (J-i)]+R sit-u-J(-8)]

> i-T/2 s

Rs [t-u+i(O-8 )])dtdu

T!2 2

" ff R (t-u)dtdu
i -T/2 s

T 2
N f (1-ITI/T)R (r)dT, (3.23)

-T

• '2 .
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where we use the assumption that R (T) is essentially zero for large values of

T. The SNR can then be expressed as
T

SNR = NT[ f (I-1-t/T)[R 2(T)/R(0)]d,]- I .  (3.24),

-T

To better understand the behavior of SNR with the various parameters,

we assume that the signal has the exponential auto correlaton function

R (T) - exp(-aITI), (3.25)

where "a" is a measure of the signal bandwidth. Substituting (3.25) into (3.24),

we obtain

sNR 2aT-l+exp(-24&T) -1

SNR - 2 [  -4aIT j-l. (3.26)

For large time bandwidth products, aT >> 1, we can approximate (3.26) by

SNR NaT - (No. Ant. Elem.) (Noise BW)(Observ. Time). (3.27)

From (3.27), we find that the noise angle estimate can be improved by either

increasing the number of antenna elements N or by increasing the space bandwidth

product (aT).

For purposes of resolution analysis, we postulate the presence of two noise

sources at angles 61 and e2 . We also assume that these noise signals belong to

uncorrelated random processes with zero means and with auto correlation functions

RI(c) and R2(). The average noise estimate is then given by

A NN(a) - T I RlI i(O-01 )]+R 2[i(O-02)]} (3.28)

i = -N
where ,

$I . (d sin e 1)/c (3.29)

and
,

-2 d sin 2)/c. (3.30)

A>..
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If the auto correlation function of both noise sources are sharp, the

average noise estimate will appear as shown in Fig. 3.11. The Rayleigh

criteria can then be used to judge whether the two noise sources are iesolvable.

For the sake of simplicity, we assume 1 - B - -82 and RI(T) - R2 (T). Then,

the two noise sources at angular locations e and -6 will be resolvable if
Ni Ni

1 1 {R (- i$ )+R(i$ )}, 1/2 {R(O)+R(2i8*)}, (3.31)
i -N i -- N1i#o i#o

where i - 0 is deleted from the summation because C0(T) does not provide any

information on the location of the noise source. Here we assumed that the two

peaks in the noise estimate were resolvable if N(0) was less than 1/2 (3dB) of
A,
N(B ).

A

N())

* *

2 1

Fig. 3.11 Average noise estimate for two noise sources.

Its
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If we assume that R(T) is sharply peaked, we can approximate (3.31) by

R(S )/R(O) -< N/8. (3.32)

From (3.32), the following observations can be made:

i) since R(T) usually decreases as T increases, increasing the value of N allows

smaller B values to satisfy (3.32). Thus as N increases, the sources can be

more closely spaced and yet still be resolvable.

(if) The aperture of integration T does not effect (3.32) and as a result

a larger time of integration will not improve the available system resolution.

(iii) Larger signal bandwidths imply faster decay of R(8), thus allowing

smaller values of B to satisfy the condition in (3.32).

3.6 POST PROCESSING

Thus far, we have been concerned with estimating the angular distribution

of the far field noise. We now consider an equally relevant aspect of adaptive

array processing: the determination of the accompanying weights to be applied

to the elements of the phased array. In this section, we consider two methods

to accomplish this and the difficulties associated with each.

We assume a scenario in which there are M noise sources a m(t) and a target

return s(t) and we assume that the desired target is at boresight. The signal

received at the n th antenna element is thus

M
f (t) s(t)+ S m(t-Tmn (3.33)

ml

When the adaptive array has weights w , the array output is

N
1

f(t) - w nf n(t) = s(t) I w +1 w s(t-T)
n - _Nln n n nm

= 0 (t)+O t), (3.34)
S n
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1 1

where the index n varies from -N to N , while the index m varies from 1 to M.

The array output f(t) is divided into a deterministic part 0 (t) and a randoms

part 0n(t) as shown in (3.34).

We now consider two approaches to determining the weights:

(i) maximizing the SNR and (ii) minimizing the noise variance.

Case (i): Maximize SNR:

The output SNR is defined as

SNR = IEf(t)]I2
Var[f(t)] (3.35)

We assume that the M noise sources belong to uncorrelated, gaussian processes

with zero mean and stationary statistics. With this assumption and (3.34),

E[f(t)] = s(t) X wn  (3.36a)
n

Var[f(t)l = w wnwJC nj (3.36b)
nj

where

Cnj = (T -T m)" (3.36c)
nj m m mn mj

To determine the weights wn necessary to maximize SNR, we must satisfy

2[ me = 0, =(3.37),Wk n Wn j nj

for k = -N 0 N . This results in the condition

2[EZ w[w [1w(F w +[jk) (C 0. (3.38)nj Wn j nj] n]n ik+j
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Using vector notation, the above condition can be written as

[W Tcw]UW-  u][CW] = 0, (3.39)

where W is a column vector [WNI, ... WN 1] T , C is the NxN matrix (symmetric)

with elements Cij and U is the unit column vector [1 ... I]T of size N. The

optimal weight vector is then

W = [ - C - = KI C -U, 
(3.40)

_ T U - _

where the term inside the brackets does not affect the SNR as can be seen from

(3.35). From (3.40), we see that determination of the optimum weights W requires

knowledge of the covariance matrix C and the operation of inverting C.

Case (ii): Minimizing Noise:

Another view point which reduces the computational requirements is to

minimize the variance of 0 (t) given in (3.34). This is different from
n

maximizing the SNR as discussed above. In this case, we assume that the

contribution 0 (t) due to the signal remains constant, i.e.

Z w = . (3.41)

The noisc: variance is then

Vartf(t)] = C c.w w,n j n j ".

where

C E R (T -~ T(.6nji m m mn mj (3.36)

To minimize (3.36), we differentiate (3.36) with respect to each weight and set

the derivatives equal to zero. This results in the set of equations;

I .. • h l " i
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E w = (3.42a)n

E wnC 0 (3.42b)

n n nj

for j= -N, 0...0 N.

Considering the (N-i) equations in (3.42b) and (3.42a), we find the optimal

weight vector to be

w c 1 (3.43)

where C1 is a modified matrix and U1 
f [1,00 ... 0]'. From (3.43) we notice that

we need to compute only the first column of the inverse matrix rather than the

complete matrix as in case (i) in (3.40). Since the inversion of this matrix

involves far more computational load than estimating it, we chose to reduce the

computational time by following such a method. As suggested earlier, this method

will not yield the best possible output SNR, but it is more easily implemented

optically.

We now proceed with an approximate solution to (3.40). The optimal weights

given by (3.40) are first rewritten as

E C w = k, for all J. (3.44)
n nj ni

In the case of a linear array with uniform spacing d and single frequency noise

sources, we find

TMn-Tmj = (27/TX)(j-n)d cos e (3.45a)

R m(r) = exp (j2n r) (3.45b)

where v c/X and c is the velocity of the radiation. In this case, (3.44) becomes

E w Z exp[j2rv(27/X)(k-n)d cos 8m ] = constant for all k. (3.46)
n n m

. .. . .. ":
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For the case of a single noise source, (3.46) becomes

E w exp[j4r 2(vd/X)(k-n) cos 0 ] constant. (3.47)
n n m

Ignoring the phase factors in (3.47), we obtain

E w exp(-j2nbn) - exp(j2irbk), (3.48)
n n

where

b = 27vd(cos e)/X. (3.49)

From (3.48) we see that the weights must be chosen so that the Fourier

transform (DFT) of w results in exp(j2rbk) for different values of k. Once

A A
the noise distribution is estimated, 0 is known and can be used to estimate b

from (3.49). Then, computing the weight vector involves only an inverse DFT

of the right hand side of (3.48). This can easily be performed in a digital

FFT post processor.

We should reiterate the above conclusion that a simple FFT post processor

is of use in the COC system only for the case of single frequency signals and

for uniformly spaced linear array antennas.

3.7 EXPERIMENTAL RESULTS

In this section, we consider the optical experimental computations of the

noise estimation, The data used at FI and P2 in the system of Fig. 3.5 were

recorded on film using our film recorder. The recorded data is described and

the expected estimates are compared to the outputs obtained experimentally.

We simulated the presence of two band pass noise sources as described in

Sects. 3.4.4 and 3.4.5 and recorded these signals on film in the format described
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in Sect. 3.3. The two noise signals are uncorrelated and have a spectrum that

is limited to the spatial frequencies (5-15 cy/mm). These signals were recorded

in the format shown in Fig. 3.12.

The shaded part of Fig. 3.12 represents the opaque region of the recorded

film. The line-to-line spacing used was 10 Um and the recording spot size was

10 pm. The composite reference signal f1 (n,x) was recorded on 1000 lines in

the top half of the film. If the two uncorrelated noise signals are sl(x) and

S2(W , then f1 is described by

fI(n,x) - sI(x)+s 2 (x) for all n. (3.50)

The received signals at the other antenna elements are similarly described by

f2 (n,x) - s1(x+n10 pm)+s 2 (x-n'20 Pm). (3.51)

The horizontal locations of s1 and s2 where chosen to correspond to a delay of

10 pm in one direction for s1 and a delay of 20 pm in the other direction for

s2 . The top half of the film is used during preparation of the MSF at P2 and

the bottom half during the correlation process itself.

When f is placed at P of Fig. 3.5 and an MSF of fl at P2, the expected
2 1 1 2

multichannel optical output correlation plane pattern should consist of narrow

correlation peaks at angles corresponding to the + 450 angles of the noise

sources in the model as shown in Vig. 3.13. The central channel in both films

was left blank since it ioes not contain any useful information and since the

dark line present there serves us well for alignment purposes.

The observed correlation peaks from the experiment appear to form into two

lines as in Fig. 3.13 at angles 81 and 82 corresponding to the correct angles
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of the noise sources. An isometric view of the output obtained is.shown in

Fig. 3.14. It clearly exhibits the two angular lines of correlation peaks

j predicted by theory. The results of an angular slit integration of the pattern

in Fig. 3.14 along radial lines provides the N(8) noise estimate shown in

Fig. 3.15. As shown, the output is as expected. Various other cases yielded

similar excellent agreement between theory and experiment.

3.8 CONCLUSIONS

The theoretical analysis of a frequency plane correlator COC system for

adaptive processing has been performed, an optical system has been fabricated,

a digital simulation of the system has been completed and various noise source

models have been produced and analyzed. The results of our initial experiments

using the optical FPC version of the COC system to compute the angular noise

field distribution and noise estimates were successful and agreed well with

theory as shown.

A detailed analysis of the statistics of the noise estimate obtained from

the COC system, the postprocessing requirements, and the number of samples

necessary to obtain an adequate estimate of tle noise statistics were conducted

and provided the valuable information on further direction for an alternate

COC processor for adaptive radar.

From a statistical analysis of the method of estimating the angular noise

distributions, we found that the SNR of the estimate was directly proportional

to the number of antenna elements and the space bandwidth product of the noise

signal. We also observe that tile resolution of the estimate was independent

of the integrating aperture and improved with an increase in the noise band-

width or an increase in the number of antenna elements.

We have also determined that the postprocessing to calculate the adaptive

weights from the output of the COC system can be approached either by maximizing

SNR (this requires knowledge of the complete covariance matrix and its complete

i I
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inverse) or by minimizing the noise variance (this requires knowledge of the

full covariance matrix but only the first column of its inverse). This latter

solution results in a considerably simpler COC electronic postprocessor.

Moreso, our analysis demonstrated that the postprocessor that computes the

weights from the angular noise distribution outputs of the COC system is a

simple inverse FFT system only for the case of a linear array and for mono-

frequency noise sources. These conclusions are less disturbing when time and

frequency diversity are considered, since in this case, we can simply bandpass

the data into narrow enough frequency bands to allow use of a simple inverse

Fourier transform digital postprocessing operation for each adaptive frequency.

A more major concern with the frequency plane correlator version of the

COC adaptive processor is its limited input time bandwidth product and the

failure for 2-D spatial light modulators to mature signigicantly in the past

year. Since 2 N samples at the noise bandwidth are necessary per antenni

element to accurately estimate the noise statistics for an N element adaptive

array and since we must record the heterodyne carrier to obtain the necessary

angular resolution, a very large input time bandwidth product is necessary

for an optical COC adaptive radar processor. We thus propose to utilize a

COC system with I-D acoustic-optic transducers of high center frequency and

with more reliability and availability than the 2-D spatial light modulators

initially contemplated and required in the FPC version of the COC system.

This will solve our component availability problem. To obtain the large

time bandwidth product necessary, we will employ a time integrating correlator

Sstructure. We plan to pursue these new COC 
system design considerations 

in

the next phase of this program. The basic conceptual idea of this new COC

svstem is the same as the one described here. The modifications noted are

made to allow adequate noise statistics to be obtained and sufficient angular

resolution to be retained. A version of this time integrating acousto-optic

system with both angle (space) and frequer y diversity also appears possible.
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CHAPTER 4

ITERATIVE OPTICAL PROCESSOR FOR ADAPTIVE PHASED ARRAY RADAR

4.1 INTRODUCTION

The most immediately realizable electro-optical processor for APAR that

we have investigated is described in this chapter. It is basically a non-

coherent, feedback, iterative, vector-matrix multiplier using a linear LED

input source array, a fixed covariance matrix and an orthogonal linear output

photodetector array with appropriate intermediate optics. The APAR loop

equation is reformulated in Section 4.2 as a vector-matrix equation. The basic

iterative optical processor (lOP) system is then described in Section 4.3. The

system we fabricated to test the components and to demonstrate use of this novel

system design are described in Section 4.4. Since the data to be processed are

complex numbers, the various methods to accommodate such operations in this

system are summarized in Section 4.5.

Our experimental demonstration of the use of the lOP system in an APAR

application on complex data are then described in Section 4.6. A new electro-

optical color-multiplexed lOP technique for accommodating complex data in a

vector-matrix processor is presented in Section 4.7 together with our experi-

mental demonstration of this system. Several general system application issues

are then addressed in Section 4.8.

4.2 MATHEMATICAL FORMULATION

The N intermediate differential equations that describe the average weights

W are given by __

TW/G+(M+I/G)W S*. (4.1)
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Fig. 4.1 Schematic diagram of an iterative optical

processor for adaptive phased array radar processing.
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We have modified this basic electro-optical vector-matrix system first

described in [4.1] for use in adaptive phased array radar processing and in

the solution of vector-matrix equations by: (a) modifying the transmittance

of P, to be [1-M], where I is the identity matrix, (b) addition of S to the

output at P3 and (c) returning this output back to the LED input at P1 [4.2,4.3].

The output at P3 is now W [i-M M] . After addition of S , the output is

1 [ L-M I + S . The corresponding W input that produced this output denoted
Vn maII m

by W.. The output from the parallel adder is fed back to become the new W

input estimate, which we denote by W i+ . The system shown in Fig. 4.1 is thus

described by

Wi+ 1 = W i II-mI + S , (4.6)

where W1 denotes the LED system input and hence the cstimate of W at iteration

i, whereas Wi+ 1 denotes the output of the system ifter iteration i and the new

estimate of W for iteration i+l. As seen, (4.b) agrees with (,-.4) and hence

the output of the system when W. = W+1 -- is the desired adapitive weights

solution in (4. 3) to the steadv state equation (4.2) version of the adapt ive loop

de.scribed by .I).

. . 101' SYSTEM DESCRIPTION
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Fig. 4.3 Photograph of the 1OP system fabricated.
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by 1/M34 = 1.88 and magnification of P2 horizontally by M 12 - 1.88. These values

were set by the 7.55 x 4 mm2 size of eight of the output detector elements.

Referring to Fig. 4.2, d1 + d2 - d3 + d4 ,M12 = d2 /d1 and M34 = d4 /d3. The

focal length of all cylindrical lenses used was 100 =m. The imaging conditions

l/d1 + l/d2 - l/d3 + l/d4 - 1/100 require d3d4 /d5d6 - 1. If d1 - d4 and d2 a d3

and M12 ' I/M3 4, the values d1 = d4 - 153 mm and d2 = d3 = 288 mm resulted.

The amplitude driver used to amplitude modulate all eight LEDs in parallel

is shown in Fig. 4.4. Since the output light intensity from the Hewlett-Packard

LEDs used is nearly linearly related to the input current and is relatively

independent of temperature, the above circuit suffices for the present experi-

ments. The output detector circuitry used is shown in Fig. 4.5. The uniformity

with which each row of the P2 mask is illuminated was improved to several percent

by defocusing L1 slightly. Use of LEDs with narrower cone angles can likewise

improve uniformity of illumination. The fiber optic connections we plan between

P1 and P2 in the next version of this system will greatly decrease this problem.

Use of a fixed mask in front of P2 can adequately improve the uniformity of

illumination problem. Cross talk between rows of the mask at P2 was measured

to be as much as 40%. This can be decreased by use of guard rings on the LEDs

and mask, use of smaller LEDs and moreso by the planned fiber optic system.

4.5 COMPLEX DATA HANDLING

In practice, for the APAR problem, the vector and matrix masks used at P1'I

and P2 will contain complex elements. There are several ways by which complex

daLa can be handled in such a non-coherent system. One of the most attractive

techniques appears to be the representation of a complex quantity by its three

projections [4.4,4.5] (at 00, 1200 and 2400) in complex space, i.e., we represent

a complex vector element A byn

= A0 exp 0) + A1 exp (j2lT/3) + A2 exp (J47T/3). (4.7)



4.8

CIA + +

0 c
4.

.00

q.4J

e14

0 0n D

-4 00

U. Q. -4

-t C-4 +n ' )

-4 _ _ ii n



4.9

In this notation, the complex vector-matrix product is then described by

C - B[A]

- [A-+ At + A ] [B6 + B£ + B2] (4 .8a)

[Aa+B + AB-+ ]^
00 2 1 12 0

+ [A^OB + A B +ABA]^

2 0 1

Realization of a vector-matri multiplier and 1 syste with cople vector an

matrix elents requires an input array at P1 of length 3M and a mask at P2

of size 3 N x 3 M. We describe such an lOP system operating on complex data

for an APAR application in Section 4.6. An alternate technique for handling

complex data is described in Section 4.7.

4.6 DEMONSTRATION OF THEJ OP SYSTEM

To demonstrate the use of the IOP system described in Section 4.3 on complex

data for the AFAR problem, a simple two element linear array with one external

noise source at an angle 8 with respect to the normal to the array is considered

with the addition of additive noise also present (4.2]. The signals received

at the two array elements are

v" Xl + Yl (4.9a)

v 2  x2 +Y2 (4.9b)

In (4.9), x1 is the interference voltage in channel I and yi is the noise voltage

in channel i. The voltage x2  lags x1 by a phase angle

y - (2vd/A) sin 8, (4.10)

i.e., x2 xI exp (-Jy) and the noise voltages y1 and Y2 will be independent of

each other and of the interference signals.
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We denote the noise power in each elem ent channel due to this external

noise source by P and the receiver power in each channel by N. In this case,

the covariance matrix becomes

-[7p P exp (-Jy)]
N 1 (4.11)

exp(Jy) P+N

In the specific APAR problem considered to demonstrate the use of this processor,

we chose a noise source emitting P - 0.1 watts at an angle ej such that

(2wd/X) sin -i =r/3. (4.12)

We assume a receiver noise power N - 0.5 (5 times larger than the received power

P due to the noise source itself). Thus, N/P - 5 results in a fast convergence

rate for the iterative processor. The actual mask used at P2 of Fig. 4.1 is

P-N P exp(-j41/3)]

[I-H] .(4.13)

[I-M tPexp(j4w/3) I-P-N "

The form used for this mask is shown in Fig. 4.6. The matrix elements mot,

mi, m' are all real and positive as shown in Section 4.5 and Fig. 4.6 and below.

M; = [I-M]a o[ 1-PN (4.14a)

M = [I-M]1-[: - 1 (4.14b)

M2 [I-M]i- [ a (4.14c)

The general form for the mask is shown in Fig. 4.6a, the specific form for our

example is shown in Fig. 4.6b.

To demonstrate the use of the electro-optical IOP system of Fig. 4.1 for this

application, six of the eight input LEDs were used and the mask (I - H] was

arranged as shown in Fig. 4.6. The six LED outputs at iteration I are described by

Of'
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W, = w, iw- 0 () l ( () wij (2), W,- (1), wi, 2 (2)). (4.15)

For our example, the output from the six photodetector elements (after addition

of S) are described by
(4.16)

Hi 1 f (Wil, 01,H~, (2), i+l, (1), Wi~lj (2), Wil,2^ (1), Wijl,' (2)).

This simple APAR processor was simulated. The theoretical results expected after

the first six iterations in the steady state (infinite iterations) are shown in

Table 4.1. The resultant experimental results obtained (after the first, secnd

and fifth iterations) are shown in the A scope displays in Fig. 4.7.

Solving for the adaptive weights, we obtain

[W] - 2 2C P+N-P exp(-jy) (4.17)
(P+N) 2_P 2 P+N-P exp(+jy)J"

We chose C = 0.3, where the steering vector is

This choice of C simplifies the multiplicative factor in (4.17) to be approximately

unity. Evaluation of the six cumponents of W i+ in (4.17) for the first six

iterations are given in Table 4.1. The evaluation of (4.17) for this case yields

0:.3 [06-0.1 exp(-Jn/3)([W -f 06.35 LO.6-O i exp(+jwr/3)] (4.19)

The results shown in Fig. 4.7 are quite close to the predicted values in Table 4.1

as seen. As demonstrated, the results of this initial lOP system demonstration

are most promising.

.+.
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(a)

(b)

(C)

p!

Fig. 4.7 Outputs obtained from the six photodetector elements
in the IOP system after iteration 0, 1, and 5.
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4.7 COMPLEX DATA REPRESENTATION BY COLOR MULTIPLEXING

The complex data representation scheme noted in Section 4.5 and experimentally

demonstrated in Section 4.6 requires three times the space bandwidth product for

the input LED array and the output photodetector array and nine times the space

bandwidth for the matrix mask at P These input and output plane requirements

can be reduced by use of a novel color multiplexing technique shown in Fig. 4.8.

In this method, three linear input LED arrays (each of a different color or wave-

length) are used and three linear output photodetector arrays are required. Each

of the three comppnents W^ , Wi , W- of W are represented by a separate linear

LED input array. A grating inserted between P2 and P3 enable separation of the

three output products on the three linear photodetector arrays. Summation of the

proper photodiode outputs at P3 yields the correct vector-matrix product which

can then be fed back to P1 in the 1OP system [4.3].

The results of our initial experiments to demonstrate [4.3] the use of this

color multiplexed lOP system of Fig. 4.8 are shown in Fig. 4.9. In this experi-

ment, an arc lamp source was used with three spectral lines (X violet, X green

and A3 orange). A two element input vector with components

al = (1,0) aX2  (1,I), aX3 = (0,1) (4.20)

was used as the 2 x 3 input (Fig. 4.9a). We consider the multiplication of A by

B. The output from the 2 x 6 mask B used is shown in Fig. 4.9b. The three rows

of the matrix B are read out with X1 + A 2' X2, and X3 light, respectively,

because of the input pattern chosen in (4.20). The mask P2 output shown are as

expected. The P3 output consists of three rows of six detector elements per row

(Fig. 4.9c). These correspond to the eighteen possible cross products. All are

of the proper form as indicated. These initial experiments using this novel

complex data representation method were most promising. Their future use requires

the need for several parallel arrays of laser diodes, which we hope to have and

p.. - - .1- A'
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Fig. 4.8 Schematic diagram of a color-multiplexed optical processor.
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demonstrate in Phase 2 of this program.

4.8 SYSTEM CONSIDERATIONS

Either LEDs or laser diodes can be used as the light source. Laser diodes

are preferable because of their smaller size, higher power output, variety of

wavelengths available, and their large linear dynamic range of output light

intensity with input current. Laser diodes require heat sinking to compensate

for temperature effects, but often this can be performed directly on the chip.i Pulse width sourc.e modulation appears to be necessary with LED sources because

of their non-linear behavior at low current. This will decrease the system's

speed but it is still more than adequate for the AFAR application. A system cycle

time of 1 visec appears possible. However, multiplexed input and output electronics

are preferable for reasons of cost and man hours. Even with pulse width modula-

tion and input and output multiplexing, adequate system speeds for the AFAR

program are easily obtainable.

A major concern in such an iterative processor is its accuracy. The results

of computer simulations have shown that cross talk and nonuniform illumination of

the P 2 mask and detector nonuniformity are the major error sources. As suggested

in Section 4.4, use of fiber optic connectors between P 1 and P 2apast ov

the uniformity and cross talk problems. A fixed auxiliary mask in front of P 2

is planned to compensate for any nonuniformity that still remains. The optics

between P2 and P 3will be removed in the next system by designing the front end

so that the detector array can be mounted flush with the P mask. LED nonlinearityI 2
will be decreased by use of pulse width input modulation. Any differences that

remain between the saturation levels of the different LEDs and any sensitivity

differences present between individual photodetectors will be compensated for

electronically using a programmable read only memory in the electronic feed-

back circuitry.
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This IOP system appears to be most promising and to merit further research

with major attention given to its accuracy and to fabrication of the prototype

system utilizing recent advances in LED, fiber optics, detector, and solid-state

electronics and the extensive test, analysis and demonstration of the system

fabricated.
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CHAPTER 5

SUMMARY AND CONCLUSION

Three different and new optical signal processing techniques and system

architectures for adaptive radar processing have been described, analyzed,

initial experiments performed, component availability assessed and recommenda-

tions provided.

5.1 OPTICAL RESIDUE ARITHMETIC

The first technique considered utilized residue arithmetic. The two moti-

vations for considering such an approach for adaptive radar processing were the

high-speed and parallel nature of a residue arithmetic processor (specifically,

no carries are necessary) and that high computational accuracy is possible with

modest accuracy in each subcomputation. Application of residue arithmetic

techniques to an optical processor is thus attractive because of the parallel

nature of an optical system, which provides a vehicle with which to perform the

many parallel computations necessary in a residue arithmetic system. It is also

attractive because all individual computations need be performed to an accuracy

equal to that of the basis rather than the full number. Thus, an optical residue

* arithmetic processor provides an attractive method to improve the accuracy of an

analog processor.

We first developed a new correlation formulation of residue arithmetic

processors. This allows such processors to be realized using correlators rather

than conventional systems that perform additions, subtractions, etc. Since

optical, CCD and other technologies perform correlations rather than the more

conventional mathematical operations, such a formulation leads more directly to

implementation of residue processor architectures in such technologies.

As the first two special components of an optical residue arithmetic processor,

we considered the input and output problems, specifically converting digital and

decimal data into residue form for input to a residue arithmetic processor and then

techniques for converting residue data into digital and decimal form at the output

0K
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of the system. Optical decimal/residue and residue/decimal converters were

designed, and experimental laboratory system was assembled and experimental

demonstration of these two new systems were obtained. An optical residue

arithmetic adder and vector-matrix multiplier system were then d'-signed.

The two major issues of concern in such a processor are how to input data

to such a system in the proper format and the availability of the necessary

component technology. The first issue requires more extensive study and

analysis as well as a reformulation of the adaptive radar problem. In all sys-

tems considered, the control system to provide input data of the proper form

and in the proper locations appears to require such extensive logic that the

parallel processing features of a residue arithmetic processor become less

attractive. Implementation with 2-D spatial light modulators, integrated optical

systems and other optical technologies appears to require such extensive device

and component development that implementation of such systems appears to be years

away. The most readily implementable residue arithmetic processing technique

appears to utilize fiber optics and thus capitalize on rapid advances in this

area for communication applications. Because the other two optical processors

we considered for adaptive radar applications can be realized with existing

components and appear to be capable of the necessary system performance, we

recommend that one keep abreast of developments in integrated optics, CCD devices,

Josephson junction technology and other candidate residue arithmetic system

components and that further research be performed on the COC and lOP systems

for adaptive phased array radar.

5.2 COC PROCESSOR

The second candidate optical system considered is the closest of any to

a conventional optical processor. The basic system is a hybrid processor con-

sisting of a frequency plane correlator modified to function as a multi-channel
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system. The multi-channel output correlation plane pattern is then slit inte-

grated using a specially shaped solid-state detector. A simple digital inverse

DFT postprocessor can then compute the necessary adaptive weights from this

output for many scenarios.

This COC processor operates on the heterodyned received signals at the

antenna elements. It computes the correlation of the N received antenna signals

with a reference signal from one antenna element in parallel. The multi-channel

optically computed output correlation plane pattern is such that each noise source

at a different angle produces a set of correlation peaks that align in one row at

a given angle in the optical correlation plane proportional to the azimuth angle

e of the noise source. Thus, after integrating the multi-channel correlationm

output along different radial lines (using a special solid-state detector with

angular shaped detector elements), the angular distribution of the noise

field N (0 ) is obtained.

For a single monofrequency noise source and a linear array with equally

spaced elements, an inverse DFT postprocessor has been found to be sufficient to

coY "'- the weights from the N (0) information. Initial experiments and computer

simulations of this system produced outputs as expected. A statistical analysis

of this system was conducted in which the accuracy of the estimate was related

to the number of adaptive elements, signal bandwidth and observation time. Compu-

tation of the optimum weights from the N (0) pattern were performed using maxi-

zation of the output SNR and minimization of the output noise as two goodness

criteria. To obtain the optimum weights using SNR as the criteria required

computation of the full covariance correlation matrix and its full inversion.

Conversely, the second criteria required computation of only one column of the

correlation matrix, as the COC system performs. Thus, we expect the weights

computed from the hybrid optical/digital COC system to be optimum for minimizing

the output noise rather than the output SNR.
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Our major concern with the present COC system was the need. for real-time

and reusable 2-D spatial light modulators and the need to process long time

bandwidth product signals to obtain adequate noise statistics. We thus advocate

use of the same basic correlation and system concept using instead a time

integrating acousto-optic correlator to achieve the long signal integration

tine bandwidth products needed and to utilize more available real-time trans-

ducers.

5.3 lOP SYSTE(

The third optical system for adaptive phased array radar processing appears

to be the most attractive one that is both most directly analyzed and most readily

implemented. The basic system uses a linear input LED array, 2-D mask and linear

detector array to perform a vector-matrix multiplication. Addition of a vector

to this system's output and returning the output to the LED inputs results in

an iterative optical processor using feedback. This lOP system can then solve

the vector-matrix equation of adaptive radar for the output weights using an

iterative algorithm. The inputs to this non-coherent optical processor are the

covariance matrix M and the steering vector S.

Three techniques that enable this system to operate on complex data have

been developed and experimentally demonstrated. These include a new color

multiplexed technique.

The accuracy of this or any such feedback or iterative system was our primary

concern. Uniform illumination of each row of the mask, crosstalk between rows,

and non-linear LED responses were determined by analysis, experiment, and

simulation to be the major error sources of concern. The use of fiber optic

coupling from the LEDs to the mask (and a fixed mask in front of the variable

mask) overcomes the nonuniform illumination and crosstalk problems noted above.

The use of pulse width modulation of the LED source outputs or amplitude modulation
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of laser diode sources overcomes the source nonlinearity prollems noted.

Differences in the saturation level of the LED sources and differences in

the sensitivity of the output detector elements can be corrected in the elec-

tronic feedback system itself.

The system fabricated, initial tests performed on it, and the results of

the simple adaptive phased array radar problems performed to demonstrate the

use of the system were most encouraging. We thus recommend the fabrication

of a prototype of such a system as described above with extensive component

tests and attention to the accuracy and system performance obtainable together

with extensive testing of the use of the system and diverse adaptive phased

array radar problems.

SI
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02400
02500
02600
02700
02800
02900 C IN THI~S PDOGflAM I GAVE TWO POSSIBLE INPUTS AS NOISE SOURCES
03000 C AT rIPST THE '4FYT DO LOOPS IN THE PROGRAM CAN BE USED TO
03100 C r'mr1.ATE TUE tnOIzE 09 A SO!1PfCE WuIE'N fIVF A WAVE AS rOS(P1ll)
03100 C UNLY FO'7 PHI PEflEE4 ZERO AND TWO Pl, IT M'EANS ONLY ONE PERIGI)
03300 C ITS A NON-PFRTCDICAL NOISE.
03400 C T'IE OTt~rR pnS,,IpILTY IS & SErolt3 fP01P ov nl LOOPS FnR TH4E
03500 C CASE WHEN THE NOISE IS PERIODICAL(COS(PHI)).
03600
03700 C NON-PERIODECAL NOISE
03800 nn) 100 Y=0,!JPPFRX
03900 REF(X)=O.0
04000 H"l 2*FT*vP1* - FI*ANC.LE1*19
04100 HR2 =2*PI*FR2*Y - PI*ANGLF2*10
04200 TFU(HR.GE..0).AND. (HR1.LE.(2*PI)))
04300 1 OEF(Y)=A*(COS( (2*PI*!R1*7)i(PIANGLE1*1g)),1)
04400 C IF((IRP?.GE.0.0).AND.(11P2.LF.(2*PI)) )PEW(T)=REF(X)+
04500 C 1 ,*(COS((2*PI*F-R2*X),(PI*ANGLE2*19))+1)
04600 100 lrONTINTIE
04700 D'O 200 N=0,UPP*Rr'
04800 nog ilzo X=o,ulp~p
04900 ALL(X)=0.0
05000 PA1 2*PI*FPI*X - FI*ANGLPl*N
05100 HA2= ?*PJ*FR2*X - PI*ANGLE2*(UFPERN-N)
05200 TF((lIAI.GE.0.0).AND. (HA1.LE.(2*PI)))ALLCX)=
05300 1 *(COS((2PI[FP1*X),(FI*AtSLEI*N)),1)
05400 IF((HA2.GE.0).AND.(HA2.LE.(2*PI)))ALL(X)--
05500 1ALfr(X)+A*(COS(r2*PT*FR2*X)+
05600 1 (PI*ANGLE2*UFPFRN-N)).1)
05700 150 roNTINtlE
05800
05900
06000



'olooA.3

,1'200 C PFRJnr'I'At. mJnT5s
J.ioo C no 100oooUPK'
.6400 C 9F(X=A(ClS(2*Pf*P1i* + PI*ANGLI*19) +
'boo C 1 COS(2*P1*IR2*X + PI*ANGLE7)*1Q) + 2)
o600 C1000 riNTIN1?P
6100 C no) 200 =0,1UPPER
6800 C DO 1500 X=0,IUPPFRX
6900 C PLL'X)=A*(fls(2*PI*FRI*Y 4 vI*(mrf.F*) +
)7000 C I COS(2aPl*FR2*X + PI*AI!GLE2*CUPFEPH-N))42)
7100 C1500 rONTIN!E
1200
7300
7400 C~ALL COPQE1.(127,ALL,0EF)
,1500 Do 200 X=0,UPPERX
7600 A~vAV(Y,!N)=ALL(X)
J700 200 CUNTIE
1800 C CALL. PI.TIN(127,39,AR.RAY,R)E.EAT',4AX)
1900 C OVN(UNIT=21)
9000 f~ WRIRTF(1,2r0)APPAY
100 250 FORM4AT( 9(1XG1O.5))

8200 C CLOSE (I'NIT'=21)
11300 CALL PLOT2D(127,38,ARRAY)
$1400 PAlISF?
8i500 CALL NOISAN(IJPPERX,UPPERN,ARRAY)
-~00 STOP

,3700 E.ND

3900 SUPROUTINE NOISAN(UPPERX,UPPERNeARRAY)
1000 Pi6AL OAr,AT1TA(180),APPAV(0:127,0:38) 4.CM
)100 INITEGER XO,YO,X,TITA,Y,Yl
1200
sioo Pl= 4*ATAN(l.0)

9400. yUr ilprE'?Y/2
Ai0 Y0=UPPFR4/2+4

9600
4.1100 no j300 TITA=1,180

14 E 00 ATITA(TITA)0O.0
9900 300 CO!JTINUZ
L;000 flO 400 Tlr.A,P0
0100 qAD=(TITA/180.0)*P1
li00 Ir (TT7A.EQ.90) GCTC 400
030( DO 410 X=O,UOPERY

,40C V=(SIN(RAD)/COS(RAD))*(X-X0)+Y0+0.5
0500 Vi I FPE RN- VI,1600 IF((Yl.LT.0).OR.(V.LT.0)) COTO 410
A700 ATITA(TITAYATITA(TITA)+A'9AY(X,Y)
0 1750 410 CUNT I N E
U800 400 CONT INUF
0900 rAr.L !D1nfl1(1aOATTB,1.0,1.0)
1000 STOP
1100 E N r

L ,



A. 4
00100 C
00200 C
00300 bULIPUIJTINIE COVW'?L(Nil ,TX,TY)
00400 C FPEFOP0M A CIOC1'LAP (*lRIELA'!1CN CF TIH' "F.AL
00500 C ARRAY" TX(O:NUM) TY(;:NtIJ?). THF RESULT IS III
00600 r TY(0,1 AMPn Te 4Tr!F.n SO TOAT TX(O)TX(Ntlv/2)
00700 C
O0E00 INTEGER 1,NT'l',N
00900 iRFAL-TX(0:1023),TY(0:1023)
01000 CnYP[EX X(in3,(:01
01100) DU 400 1=0,NUMA
01200 400 X(I)=CxIPLX(TX(I),0.0)
01300 DO 00 I=0,l1'
01400 500 Y(I)=CPLX(TY(T),0.O)
01500 CALL FFT(!YrJM,'f,1)
01600 CALL FFT(U4,Y,l)
01700 CALL "MIVJN'J'JY)
01800 DU 600 I=0,NUM
01900 buo YI~()YI/NJ*2
02000 CALL FFT(NUM4,X,-1)
02100 NN1/
02200 00 700 I=0,N
02300 TY(I)=4PS(v(T4N+1))
02400 700 TX(Ie.N+1)=ABSCXCI))
02500 RFTfIRN
02o00 END



A. 5

00100 c

00300 :;!P'rtrFFT(MIIM,% INV)
00400 C TtPIS zyvnpfJTTMF flflFC 'T"F FFT rF T!JE nfl.l nr)Ml!qnAL
00500 C CliMPLEX VECTOP (0 '~)NU= Nl*il TIS IS
00600 c A r :cflAATT3'-N-TIPP,QPIY 2,IN-PLACE FFT 'QCOtTINF
00700 C TU flU INVC'RSE FF'T SF7T INV To -1 OTHE~RWISE SFT TO 1
00800 C
00900 INTE~GER NJ4,I,N,L,i,L2,L3,J,INV
01000 RFAL "I
01100 COMPL'FX X(0:1023),U,'O,T
01200 N=INTeAror(m1tj"41 .0)/AT qr(1.0)40.5)
01300 IF(ALU.I(NUMi+l.0)/ALOG(2.U)-N).GE.0.001) GO To 3000
01400 J=O
01500 PC~ 300 T=0, No"
olboo IF(1.r"E.J) GO TO 100
0.17o T=Y(J)
01800 X(J)=K(I)
01900 v(T)rzT
02000 10o K=(!NU'1+1)I2
02100 i0o TF(J.LT.K.rF.I.FG.NUM) GO To 300
02200 J=J-K
U 2300 K=Y/2
02400 GO To 200
02500 300 J=,J+K
02600 F~.4~
U2700 DU 2000 I=l,N
02EOO 7.=2**
02900 1.2=L/2
03000
03100 ~ ~ .,00
03200OUL~f~ ir2)-S ~IL)
03300 IF(IN'J.EQ.-1) W=(1.0,O.O)IW
0340U DO) 2000 J=0,L3
03500 nfl 1000 i=J,NTIM,L
03600 -X (r~+L 2) *I
03100 Y(v+T 2)=Y(v')-T
03800 luoo C)XK+
03S00 2 0 00
04000 RETURN
04100 3000 ikF1TE (c,A0ono
04X'00 4000 FEUi0AT(* T.-fE NU!PER Ov ELEMENTS IN THE INPUT't/,
042~0U VErTCR IS NOT 2**N')
04400 1RETUiRN
0450U E.ND



A. 6
00 1 0 u k: 11 t'- 'M V 1 F IN Ili- 1.11114V V IA IT. I iW)
00200 c 11!i A PROGP4" 01 T''F T,- -r.-(NIX 400 *I S)~ rflAGF
00300 C SrUIjl V~:l II" T"F pnrl ,A~ Ac! r1!Ljrjih-
00400 C @TAv'E SYS:TEK6
00500 C
00600 C @EXEru'rE PlT.FO!?,P)IOGRAM~.FOP.,SYS:TEKT.RrL
00700 C
00800 C
00900 511PPOI'TTNF flLfT2r(Y,Y,F)
01000 C THIS SURvROUINE PLOTS ruE VALTJES IN TPE POSITIVF
01100 C REAL 2-n~ ADDAV P(0:Y,0:V). VIUE PLOT IS MADF !IP OF
01200eO C YHi "MR170NTA, TINES FACHI CONTAINING X+l POT-ITS.
01300 C TFE k1AXIMlUM% NUMBER OF LINJES AND POINTS IS 912.
01400 CI0150U INTEGER X,Y,I1,J,1UXi41NY,4,H
01600 REAL P(O:Y,O:v),YVdAX(0:511)XIC,INC,PAV,RATIO
01700 n RITE (5,-0)
01800 50 FORM1AT(' TF CnPY TS WNTED TYPE 1 IF NOT TYPE 0',/,
01500 1I AcTEo r1.01 IS FINI HFEC%/,
020'00 2 - HIRFArY SPACE AND RETURN-)
02100 j.FAT) (5,75) 1
02200 75 FOPMATIi)
02300 VINC=512.0/V
02400 RAT1fOhFT '1AT( X)/rLflAT(V)
02500 XINCz512.0/V
02t00 FVAY~vC0,O)
02700 PO 100 I=0,X
02800 110J 100 *J=O,Y
02900 100 1r(PMA.LT.(,J)) PV.AX=F(,J)
03000 DO 200 T=0,X(
03100 200 VX~~
03z'0O CALL INITT(480)
03300 CALL I"(.,FCTy,.IIJX
03400 DCO A00 j=r',v
03500 M1X=512-X1NC*J
03600 91'!Y- YTNf*J
03700 CALL S,INVP(MINX,511,M4INY,511)
031300 rA, #nrVA(0.0,O.O)
03900 DOU 403 I=,
04000 1F(P(I,J).LT.YMAX(I)) GO TO 300

04100 CaLt npA(cLnAT(T),P(I,J))
04200 Yk!AT)=P(I,J)
04300 Gfl TC 400
04400 300 CALL 'VEA(FLflAT(T),P(I,J))
04500 400 rnmpyi
04o00 '.'ZNT(P ATIO*FLOAT(J+1) )-INT(RATIO*FLOAT(J))
04700N=V?
04800 DOU 500 I=01N
04900 500Y'A('T)YA(---PA/
05000 A-
05100 'fo 600 170,F~
05200 600 YMIAX(T)P(LJ4-l)
05300 C PLT. '(0y A "q ( 0, r ?
05400 CALL fl "'.A"(512,0)
05500 C ALI. R': AS( 1023 , 0
05tb00 CALL 1 40VADS(0,767)
05700 CA Lt. AIOn"
05800 IkLAn (5,*)
0 5 0Oki I VI. FQ 1)( CAtLF RfC Pv
06000 kErIRN

VV
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06204) A. 7

0 ~0 C I-LdT3 TifE REAL ARPAY fPf 0: UM).
Obt00 C NI'S .MAX 15 1023.
06700 c VMIN A'41 VMAX APE THE MINIMUM AND MAXIMUMJ0O0 C V A LylfEn V'E An RA Y P . T"IFY OR FIQ qALINr.
36900 IF T")h PLL)TS ARE TO HAVE THE SAM4E SCALE
07 000 C 'I1101 THEY MuST "AVF TVE SAMF VALUES CF vtM'AX
0710U C ANC YMIN. IF THP SUBROUTINE IS TO DO THE
07200 C SrATlINn T"E" cFT vJAY EcfuJL TO V?'IN.
07J00 C
07400 INVGFR I, 11M,! 4

j07500 k7AL P(0:'IrTIM),YMIMl,VM&X,XMIIN,XMAX
07600 14ITF (,5)
07/00 250 FUPMAT(' IF COPY IS WANTED TYPE 1 IF NOT TYPE 0',
07800 1 Av~TE 0 rLCT IS FINISHEC-,/,
07 OU 2 '.H1'N RFAn~y SPArE ANfl RFTt1Fhl-)
080.00 ; EAfl (5, 275) 1
08100 275 FCP!4AT(TI)
08200 IF(YMIN.NF.YMAX) GO TO 350
OP30U yllN~rO(0)
08400 YVAYzP(U)
08500 1,n 3 00 1 =0, v tN
08600 TF(nfT'.VT.Y"-I'l) Y"TNl(T)I
U 81l00 3 00 IF(P(I).rT.YMAX) YMAX=P(l)
08EOU .i~u Yvit.
08900 X!?AX zFt r'ATQN1f'A)IOQCOO r ,ALT INITT(41pfl
09100 CALL nV:INrU( XVIN,XMAX,Y tN,YMAX)
09200 CrlI-. 'CV:;A(0.0,t'(0))

00u400 400 rJillL flDAuA?(F.AT(I),fl(T))
09t)00 CALL 40VA13S(0,767)
09t00 C AL.!. ANj"O T'E
09700 ilFAP) (5,*) 1!
09p00 T'q

09900 END)

J,
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RAWC PtaR and exeauW A emaA, devetopment, teuC an
* a.eter-ted a4q-W~itiofl potoggmJI in 6uppoU. oi Conawnd, Conto

Cmuxatona and Inte~tgence (01r) ac UiU. Teck& Af
and engineeming 4uppo/tt wtUn ameah oi te utne a competenc
4A potovie dtoEBP ogAw 0jjicu (PO,6) ondotrex EW
dtement6. The pkimonipat techni&At ot"U6in maakea t
com~zwtictoml, etetoumagnetZ gwi4Aae and co.ntAot, 6u,%-
vetoWana o6 giwund and aeAoapace objeo4&, intttig eft dat
cotteeUon and hand"n, J intiti~ 46tew teahnogV,
ionoa6phevi. potopaot on, 460~ 6taCtenmu, stcawsmve
phpiA&z ard etmta&n tetiabV4, maln~taLnbiti4t and

compaV/U4



S


